首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁流变抛光消除磨削亚表面损伤层工艺研究   总被引:1,自引:1,他引:1  
针对传统光学制造技术对亚表面控制局限性和磁流变抛光的特点,提出用磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程。采用自研的磁流变抛光机床KDMRF−1000和水基磁流变抛光液KDMRW-2进行了磁流变抛光去除磨削亚表面损伤层的实验研究。直径为100mm的K9材料平面玻璃,经过156min的磁流变粗抛,去除50um深度的亚表面损伤层,表面粗糙度Ra值提升至0.926nm,经过17.5min磁流变精抛,去除了200nm深度的材料,并消除磁流变粗抛产生的抛光纹路,表面粗糙度Ra值提升至0.575nm。应用磁流变抛光可以高效消除磨削产生的亚表面损伤层。磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程可以实现近零亚表面损伤和纳米精度抛光两个工艺目标。  相似文献   

2.
基于磁流变效应和集群原理提出集群磁流变效应平面抛光技术,对磁极排布方式、端面形状及其尺寸的磁场特性进行静磁场有限元分析优化,结果表明,选取圆柱平底磁极进行同向规律排布时容易形成由多个独立"微磨头"组成的柔性抛光膜,能实现加工表面与"微磨头"的实际接触面积最大化。通过设置"微磨头"尺寸及数量与工件的接触状态,对K9玻璃、单晶硅和单晶6H-SiC三种硬脆材料基片加工出弧形抛光带,试验验证集群磁流变效应抛光膜的集群特性。对加工表面与抛光盘表面之间的间隙、加工时间、磁感应强度和转速等集群磁流变平面抛光工艺参数进行试验优化,并采取优化工艺对三种硬脆材料进行30 min抛光,K9玻璃表面粗糙度从Ra0.34μm下降到Ra1.4 nm,单晶硅从Ra57.2 nm下降到Ra4 nm,单晶SiC从Ra72.89 nm下降到Ra1.92 nm,均能获得纳米级粗糙度表面。  相似文献   

3.
为了实现石英玻璃的高效低损伤超精密磨削加工,研究不同粒度金刚石砂轮磨削石英玻璃的表面和亚表面质量,建立表面粗糙度与亚表面损伤深度之间的关系模型。通过石英玻璃磨削试验研究400#、1 500#、2 000#和5 000#金刚石砂轮磨削石英玻璃的表面微观形貌、表面粗糙度及其亚表面损伤深度,分析相应的材料去除方式;基于压痕断裂力学理论分析脆性域磨削石英玻璃时工件表面微观形貌和亚表面微裂纹的形成机理,建立表面粗糙度PV值和亚表面损伤深度SSD之间的定量关系。研究结果表明:随着砂轮粒度的减小,石英玻璃磨削表面的凹坑、微裂纹、深划痕等缺陷逐渐减少,表面粗糙度Ra和PV以及亚表面损伤深度SSD均随之明显减小,从400#砂轮磨削表面的R_a 274.0 nm、PV 5.35μm和SSD 5.73μm降低至5 000#砂轮磨削表面的Ra 1.4 nm、PV 0.02μm和SSD 0.004μm。500#和1 500#砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,但以塑性流动去除为主,5 000#砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削石英玻璃的表面粗糙度PV与亚表面损伤深度SSD之间满足SSD=(0.627~1.356) PV~(4/3)的数学关系。  相似文献   

4.
基于集群磁流变效应超光滑平面抛光理论及研制的试验装置,对单晶SiC基片进行了平面抛光试验研究。研究结果表明,金刚石磨料对单晶SiC基片具有较好的抛光效果;加工间隙在1.4mm以内抛光效果较好,30min抛光能使表面粗糙度值减小87%以上;随着加工时间的延长,表面粗糙度越来越小,加工30min时粗糙度减小率达到86.54%,继续延长加工时间,加工表面粗糙度趋向稳定。通过优化工艺参数对直径为50.8mm(2英寸)6H单晶SiC进行了集群磁流变平面抛光,并用原子力显微镜观察了试件加工前后的三维形貌和表面粗糙度,发现经过30min加工,表面粗糙度Ra从72.89nm减小至1.9nm,说明集群磁流变效应超光滑平面抛光用于抛光单晶SiC基片可行有效且效果显著。  相似文献   

5.
为实现磷化铟高质量表面的绿色加工,使用动态磁场集群磁流变抛光对单晶磷化铟进行正交抛光实验,研究各工艺参数(抛光盘转速、工件转速、磁极转速和偏摆速度)对抛光速率及抛光表面粗糙度的影响。利用回归分析法建立反映材料去除率及表面粗糙度与抛光工艺参数关系的回归方程。结果显示:在抛光工艺参数中,工件转速对材料去除率影响最大,偏摆速度影响最小;对表面粗糙度影响最大的是抛光盘转速,磁极转速影响最小;在优化工艺参数(抛光盘转速40 r/min、工件转速500 r/min、磁极转速30 r/min、偏摆速度200 mm/min)下对单晶磷化铟抛光3 h后,表面粗糙度由Ra33 nm降至Ra 0.35 nm,材料去除率为2.5 μm/h,表明采用动态集群磁流变抛光的方法加工单晶磷化铟,可以得到高质量加工表面;建立的材料去除率及表面粗糙度回归模型,拟合优度判定系数分别为0.984 2和0.937,表明利用回归分析法建立的磷化铟磁流变抛光的材料去除率及表面粗糙度回归模型,能够有效地预测磷化铟集群磁流变抛光效果。  相似文献   

6.
针对化学气相沉积碳化硅平面反射镜的材料特性与技术要求,制定了"传统研抛 离子束抛光"的工艺方法,并在一块口径为100mm的试件上进行了验证。首先基于加工效率和亚表面损伤选择合理的工艺参数,并采用磁流变抛光斑点法测量各道工序的亚表面损伤,并以此为依据规划下一道工序的材料去除量;然后分析抛光表面粗糙度的影响因素,在此基础上对抛光工艺参数进行优化,获得表面粗糙度均方根方差值为0.584nm的超光滑表面,并控制工件的面形误差;最后采用离子束抛光进行精度提升,使工件的低频和中频误差均大幅下降,最终工件的面形精度均方根方差值达到0.007λ(λ=632.8nm),表面粗糙度均方根方差值为0.659nm。  相似文献   

7.
一种光学材料高效超精密加工方法   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了结合磁流变光整加工(MRF)与在线电解修整(ELID)磨削对各种光学材料进行超精密加工的方法,即采用ELID磨削进行预抛光以获得高质量表面,然后采用MRF进行精密抛光以进一步减小表面粗糙度和形状误差.利用该组合工艺对BK7玻璃、硅晶玻璃、碳化硅等光学材料进行了超精密加工实验,可以在短时间内使光学材料工件表面得到亚纳米级的表面粗糙度和峰谷值为λ/20(λ为单位波长,λ=632.8nm)的形状精度.  相似文献   

8.
精密磁流变抛光机床的研制   总被引:6,自引:0,他引:6  
应用磁流变抛光技术获得的表面,不仅具有较好的表面粗糙度和边缘几何形状,而且抛光面没有亚表面破坏层,并且由抛光引起的表面残余应力极小.研制了数控磁流变抛光机床,并对光学玻璃、微晶玻璃等材料进行了加工试验.  相似文献   

9.
硬盘巨磁电阻磁头的超精密抛光工艺   总被引:1,自引:0,他引:1  
申儒林 《中国机械工程》2007,18(18):2241-2245
硬盘巨磁电阻磁头的抛光可分为自由磨粒抛光和纳米研磨,在自由磨粒抛光中,精确控制载荷和金刚石磨粒的粒径,可以避免脆性去除实现延性去除。通过控制抛光过程中的抛光盘表面粗糙度、金刚石粒径大小及粒径分布和载荷等进行滚动磨粒和滑动磨粒比例的调控,获得较好的磁头表面质量和较高的材料去除率。在自由磨粒抛光阶段,先采用铅磨盘抛光,然后用锡磨盘抛光,以纳米研磨作为最后一道抛光工序对磁头表面进行研磨,获得了亚纳米级粗糙度的磁头表面。用两种工艺制作的纳米研磨盘进行加工,分别获得了0.37nm和0.8nm的磁头表面粗糙度,去除率分别为5.3 nm/min和3.9nm/min。  相似文献   

10.
单晶蓝宝石具有高的机械和光学性能,已被广泛应用于光电子、通讯、国防等领域。以提高加工后单晶蓝宝石表面质量和缩短加工时间为最终目标,采用化学机械抛光的方法抛光蓝宝石,得到了一种可行有效的抛光单晶蓝宝石的加工工艺路线。试验结果表明,采用6μm金刚石磨料粗抛蓝宝石晶片1.5 h,表面粗糙度值由220.05 nm快速降到7.88 nm;然后采用3μm金刚石磨料精抛蓝宝石晶片3 h,可以获得Ra约为2.82 nm(测量区域700μm×530μm)的表面粗糙度值。此抛光工艺能满足蓝宝石衬底高效、低损伤的抛光要求。  相似文献   

11.
光学材料磨削的亚表面损伤预测   总被引:1,自引:0,他引:1  
基于压痕断裂力学理论,建立了工件表面粗糙度与亚表层损伤深度的理论关系模型,用于预测磨削加工脆性光学材料引起的亚表层损伤深度.利用磁流变角度抛光技术检测了不同磨削加工工艺条件下亚表层的损伤深度,验证了理论模型的正确性.分析了加工工艺参数对工件表面粗糙度及亚表层损伤深度的影响规律,提出了提高材料去除率的磨削加工工艺方案.分析结果表明:脆性材料工件的亚表层损伤深度与工件的表面粗糙度呈非线性单调递增关系.工件亚表层损伤深度及工件表面粗糙度均随着切削深度和进给速度的增加而增加,随着主轴转速的增加而减小.对比实验结果与理论模型预测结果表明,提出的模型可以准确、无损伤地的预测磨削加工引起的工件亚表层损伤深度.  相似文献   

12.
针对微晶玻璃超精密磨削加工不可避免的表面/亚表面损伤问题,通过微晶玻璃磨削试验研究500#、1 500#、2 000#和5 000#金刚石砂轮磨削微晶玻璃的表面形貌、表面/亚表面损伤特征及其材料去除机理,揭示微晶玻璃脆性域磨削和塑性域磨削的表面/亚表面损伤特征,提出依次采用500#金刚石砂轮粗磨和5 000#金刚石砂轮精磨的微晶玻璃高效低损伤磨削工艺。结果表明,500#和1 500#金刚石砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#金刚石砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,5 000#金刚石砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削微晶玻璃的表面损伤形式为凹坑、微裂纹、深划痕,亚表面损伤形式为微裂纹;塑性域磨削微晶玻璃的表面损伤形式为微磨痕,亚表面损伤形式为靠近磨削表面的材料的塑性流动。  相似文献   

13.
高精度光学表面磁流变修形技术研究   总被引:2,自引:0,他引:2  
作为一种确定性子孔径的光学加工方法,磁流变抛光具有高精度、高效率、高表面质量以及无亚表面损伤的特点,有能力对各种形状的光学零件进行加工。本文系统的介绍了磁流变抛光高精度光学表面的关键技术,并采用自研的KDMRF-1000磁流变抛光机床和KDMRW-1水基磁流变抛光液对直径100mm的K4材料平面反射镜和直径200mm的K9材料球面反射镜进行加工实验。样件一面形收敛到PV值55.3nm,面形RMS值5.5nm;样件二面形收敛到PV值40.5nm,面形RMS值5nm。样件的表面粗糙度均有显著改善。  相似文献   

14.
硬脆材料微磨削表面形成机理试验研究   总被引:9,自引:0,他引:9  
微磨削作为微尺度硬脆材料元器件的一种重要加工方法越来越受到重视,分析硬脆材料微磨削材料去除机理、提出其应为脆性去除与延性去除的综合作用,并就硬脆材料微磨削中材料去除过程与传统磨削方式的不同建立微磨削表面形成模型。为揭示硬脆材料微磨削过程的表面形成机理,验证所提出的微磨削未变形切屑厚度hm与微磨削表面粗糙度Ra计算模型的科学性和准确性,针对钠钙玻璃这一典型硬脆材料设计了正交微磨削试验,就试验结果进行硬脆材料微磨削表面形貌分析,讨论硬脆材料微磨削表面影响因素以及影响规律。基于试验数据结果对所建立微磨削模型的科学性进行了验证,并通过试验获得了微磨削后表面粗糙度Ra从78 nm至0.98 μm的一系列表面,为硬脆材料微磨削表面形成机理研究提供了理论参考与试验依据。  相似文献   

15.
集群磁流变变间隙动压平坦化加工试验研究   总被引:3,自引:1,他引:2  
为了提高光电晶片集群磁流变平坦化加工效果,提出集群磁流变变间隙动压平坦化加工方法,探究各工艺参数对加工效果的影响规律。以蓝宝石晶片为研究对象开展了集群磁流变变间隙动压平坦化加工和集群磁流变抛光对比试验,通过检测加工表面粗糙度、材料去除率,观测加工表面形貌、集群磁流变抛光垫中磁链串受动态挤压前后形态变化,研究挤压幅值、工件盘转速、挤压频率以及最小加工间隙等工艺参数对加工效果的影响规律。试验结果表明:集群磁流变平坦化加工在施加工件轴向微幅低频振动后,集群磁流变抛光垫中形成的磁链串更粗壮,不但使其沿工件的径向流动实现磨粒动态更新、促使加工界面内有效磨粒数增多,而且在工件与抛光盘之间的加工间隙产生动态抛光压力、使磨粒与加工表面划擦过程柔和微量化,形成了提高材料去除效率、降低加工表面粗糙度的机制。对于2英寸蓝宝石晶电(1英寸=2.54 cm)集群磁流变变间隙动压平坦化加工与集群磁流变抛光加工效果相比,材料去除率提高19.5%,表面粗糙度降低了42.96%,在挤压振动频率1 Hz、最小加工间隙1 mm、挤压幅值0.5 mm、工件盘转速500 r/min的工艺参数下进行抛光可获得表面粗糙度为Ra0.45 nm的超光滑表面,材料去除率达到3.28 nm/min。证明了集群磁流变变间隙动压平坦化加工方法可行有效。  相似文献   

16.
针对用传统车削或研磨抛光方法加工大尺寸非球面热压硫化锌透镜存在的不足,采用金刚石砂轮磨削加工方法对热压硫化锌材料进行了加工实验。通过压痕、单颗粒金刚石刻划和磨削正交实验,研究了该方法在磨削加工过程中的塑性域去除机理及其亚表面损伤情况,并优化了超精密磨削加工工艺参数。压痕实验发现热压硫化锌材料在载荷作用下易于出现径向裂纹和微裂纹,其断裂韧性为2.643842MPa/m1/2,临界切削深度为1.808μm。单颗粒金刚石刻划实验结果表明,热压硫化锌材料在较小的切削深度下可以实现塑性域去除,但在机械去除过程中易出现多种形式的亚表层损伤。磨削实验结果表明,磨削深度是影响表面光洁度的主要因素,随着磨削深度的增大表面光洁度降低,最佳表面粗糙度为7.6nm。工作台进给速度是影响面形精度的主要因素,且平面磨削的面形精度PV值为0.185~0.395μm。研究结果表明,磨削加工热压硫化锌材料可以获得纳米级表面粗糙度。  相似文献   

17.
为研究磁流变抛光表面粗糙度与工艺参数之间的关系,本文建立数学模型并进行了求解验证。通过分析磁流变抛光技术的原理以及磁流变抛光过程中的材料去除机理,结合Preston方程建立磁流变抛光力学模型。分析工件表面受到的正压力,依据磁流变抛光机理对氧化锆陶瓷工件理论模型的流体动压力和磁场产生的磁化压力进行求解分析,具体化磁流变抛光的力学模型,解得正压力。对磁流变抛光的表面粗糙度进行建模,依据单颗磨料的材料去除作用模型建立磁流变抛光的表面粗糙度数学模型,分析抛光过程中影响表面粗糙度的具体因素,并通过MATLAB软件对方程进行仿真求解,得到磁场强度和磨料粒径对表面粗糙度的影响规律。结果表明,表面粗糙度和工件的压入深度存在一阶线性关系;当磨料粒径固定不变时,表面粗糙度随着磁场强度的增大而增大;当磁场强度固定不变时,表面粗糙度值与磨料粒径之间呈现正比关系。通过实验证明了模型和仿真结果的准确性,仿真分析得到的磁场强度与磨料粒径的关系,磁场强度与表面粗糙度之间的关系与实验一致,确定的磁场强度合理范围为0.4T左右,磨料粒径在2.5μm左右。  相似文献   

18.
利用自制抛光液对微晶玻璃进行化学机械抛光,研究络合剂、氧化剂、润滑剂种类及添加量对微晶玻璃化学机械抛光材料去除速率和表面粗糙度的影响。结果表明:抛光液中加入质量分数0.2%的EDTA络合剂后,能大幅降低材料表面粗糙度;加入质量分数2%的过硫酸铵氧化剂后能得到较光滑的材料表面和较高的材料去除速率;加入质量分数为0.2%的丙三醇润滑剂后能降低材料表面粗糙度。将EDTA络合剂、过硫酸铵氧化剂丙、三醇润滑剂加入SiO_2抛光液中对微晶玻璃进行化学机械抛光,利用原子力显微镜观察抛光微晶玻璃抛光前后的表面形貌。结果表明,抛光后微晶玻璃表面极为平整,达到了0.12 nm的纳米级光滑表面,且材料去除速率达到72.8 nm/min。  相似文献   

19.
超光滑光学表面加工技术   总被引:14,自引:5,他引:14  
现代科学技术的发展,在许多领域中提出了加工超光滑表面的要求。这种表面不仅要具备较高的面形精度和极低的表面粗糙度,同时要具有完整的表面晶格排布,消除加工损伤层。近年来国际出现了不少成功的超光滑表面加工技术,可以实现表面粗糙度小于1nm,面形精度优于30nm.本文介绍了超光滑表面的主要应用领域;从去除机理的角度讨论了BFP抛光、Teflon抛光、离子束加工、PACE加工、浮法抛光、延展性磨削等六种有代表性的超光滑表面加工技术;并对国内情况作了简单分析。  相似文献   

20.
目前工业界对高精度微结构功能表面玻璃元件,比如作为高性能二极管激光器准直透镜关键元件的圆柱槽阵列微结构功能表面玻璃元件的需求日趋增加,而其微结构表面质量的优劣也会直接影响激光器输出功率的大小。该类元件能否很好的实现其特定的光学功能取决于玻璃模压用具有微结构表面的模具(如碳化硅陶瓷等)最终加工质量,但由于碳化硅等陶瓷的超硬材料属性导致其微结构表面在精密磨削后还需要进行后续的抛光加工以达到使用精度要求。因此针对精密磨削后的无压烧结碳化硅(SSi C)微结构表面展开原位化学机械抛光(CMP)试验,试验结果表明,微结构表面粗糙度Ra及面形精度PV由磨削后的71.8 nm和2.14μm降低到了抛光后的7.7 nm和0.46μm;抛光后微结构尖角处形貌完整无破损,但尖角圆弧半径R有所扩大,由磨削后的8.082μm增大到9.294μm;微结构亚表面裂纹深度经抛光后由磨削后的5μm左右降低至1μm左右,从而有效地提高了模具精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号