首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(As2S3)0.6(GeS2)0.4 glass in non-irradiated and γ-irradiated states has been studied by using high-energy synchrotron X-ray diffraction, extended X-ray absorption fine structure spectroscopy, and positron annihilation lifetime spectroscopy. The experimental results are explained by the local changes around As and Ge atoms upon irradiation. These changes are suggested to involve chemical bonds distortion, formation of defective bonds with wrong coordination, rotation of structural units and appearance of additional free volume in the glass network.  相似文献   

2.
《Journal of Non》2006,352(6-7):589-594
Wet and dry negative etching procedures are evaluated for the fabrication of 3D graded microstructures in As–S based inorganic photoresists. Absorption of light and consequent photostructural changes near the surface layer enhance the chemical resistance of the As–S films. The success of the procedure is demonstrated by fabricating arrays of 12 μm diameter microlenses in a thin As35S65 film using a gray scale Cr mask and wet etching. The selectivity of dry etching is successfully realized by using photodiffusion in Ag–As2S3 bilayer structure. In this case, however, surface roughness or ‘grass’ is observed after etching. An unexpected segregation of silver is observed at the edges and at the boundary between the exposed and unexposed regions, which is investigated by SEM and XPS.  相似文献   

3.
The atomic structures of amorphous As40Se(60?x)Tex (x = 10 and 15) and As40Se60 glasses have been investigated by neutron and high energy X-ray diffraction methods. The two datasets were modeled simultaneously by reverse Monte Carlo (RMC) simulation technique. The RMC simulations revealed a glassy network built-up from As(Se, Te)3 pyramids in which Te atoms substitute Se atoms. The As―Se correlation function shows a strong and sharp first peak at 2.4 Å and two broad and much less intense peaks at 3.7 and 5.6 Å, related to 1st, 2nd and 3rd neighbor distances of the As―Se bonds, respectively. They are an evidence for existence of short and medium ordering in the studied glasses. The similarity of ΘTe―As―Te and ΘSe―As―Se bond distributions suggests that Te atoms have a similar role in the structure formation as Se atoms. The FTIR spectra analysis revealed impurity bonds of Se―H, As―O, Se―O, and Te―O in the glasses which contributed to enhanced absorption in visible spectral range. From the ellipsometric data analysis the optical constants and the energetic parameters of the studied glasses were established. The compositional variation of these parameters is explained in terms of chemical bonds formation and change in the density of charged defects.  相似文献   

4.
A. Kovalskiy  H. Jain  M. Mitkova 《Journal of Non》2009,355(37-42):1924-1929
The change of chemical structure resulting after X-ray and photo-induced silver diffusion into chalcogenide glass (ChG) thin films is monitored by high resolution X-ray photoelectron spectroscopy (XPS). As40S60 and Ge30Se70 thin films, which are based on pyramids and tetrahedral structural units, are investigated as model materials. Survey, core level (As 3d, S 2p, Ge 3d, Ge 2p, Se 3d, Ag 3d5/2, O 1s, C 1s) and valence band spectra have been recorded and analyzed. Reference point for the binding energy is established by the subsequent deposition of thin gold film on top of the measured samples. The chemical structure gradually changes during diffusion of silver in all the samples. The mechanism of change depends on the chemical composition, thickness of the diffused silver layer and conditions of irradiation. It is revealed that surface oxygen can play important role in the Ag photodiffusion process, leading to phase separation on the surface of the films. Photodiffusion of Ag into As40S60 film leads to the formation of a uniform ternary phase and arsenic oxides on the surface. The formation of ethane-like Ge2(S1/2)6 units together with germanium oxidation are the main outcomes of X-ray induced Ag diffusion into Ge30Se70 film.  相似文献   

5.
Local structure of Te3X2 (X = Cl, Br) chalcohalide glasses were studied using ab initio molecular orbital (MO) theory. The calculation results were compared with Mössbauer spectroscopic parameters in terms of electric-field gradient and electron density at each Te site. In addition, the existence of terminal bond –Te–X was examined. The MO analysis of Te-chain and Te-chain with Cl atoms within a picture of the frontier orbital theory elucidated that the localized orbital at –TeCl2– site is important to form tellurium halide glass.  相似文献   

6.
(As0.33S0.67)100-xAgx (0  x  28) bulk glasses showing micro-phase separation in a wide concentration range have been studied by X-ray diffraction, neutron diffraction and extended X-ray absorption fine structure measurements. The AsAgS2 composition, which forms a homogeneous glass, is modeled with the reverse Monte-Carlo simulation technique. It is established that Ag prefers the environment of S; Ag―As bonding cannot be observed. Similarly to the AsAgS2 crystalline modifications smithite and trechmannite, the main structural units of the glass are AsS3 pyramids. The covalent network of As and S atoms becomes fragmented in the glassy AsAgS2 unlike in the glassy AsS2. The environment of Ag atoms in the AsAgS2 glass differs from that in the crystalline state. In average, each Ag atom has four nearest neighbors, three of them being S and one being Ag.  相似文献   

7.
X-ray photoelectron spectroscopy and depth profile analysis were used to investigate the X-ray-induced silver photodiffusion into an amorphous As50Se50 thin film. At the initial stages of irradiation an induction period was observed while core level spectra analysis revealed the existence of a mixed As–Se–Ag interlayer between the metal and the chalcogenide matrix. It was found that during the induction period this interlayer is enriched in silver and the existing As–Se–Ag intermediate species are transformed to Ag–Se–Ag that form the metal source for the effective silver photodiffusion. With further irradiation photodiffusion proceeds by the disruption of Ag–Se bonds and the recombination of As atoms with Se to stable As–Se units. Ultimately, silver concentration reaches a plateau when the diffusion stops. A separated Ag2Se phase on the film’s surface is identified at this stage. Depth profile analysis shows that silver has been homogenously diffused into the chalcogenide matrix and the Ag2Se phase exists only at the top surface layers probably in the form of quasi-crystalline clusters that prohibit further Ag diffusion.  相似文献   

8.
In obtaining the glass, at first, the raw materials were mixed up and melted by using porcelain crucible, but in this case it was found by infra-red absorption method that the glass contains some oxygen impurities. Then a range of glasses was prepared by melting elementary pure As and S in definite proportions in a sealed vacuum tube. The infra-red absorption, molecular volume, molecular refraction, hardness, thermal expansion and viscosity of sample glasses with various compositions were investigated and, additionally, solubility of these glasses into CS2 was measured. The structure of glasses in the system AsS was studied by X-ray diffraction and a structural model was set up. From the measurements the following conclusions were made. The structure of As2S3 glass is a distorted form of the crystalline orpiment structure. With increasing S content above As2S3, S is likely to exist in the chain-like form, but when the S content is greater than that in As2S8–10, both chain-like and ring type forms co-exist. With decreasing S content below As2S3, S between As and As is eliminated and AsAs bonds are formed. Consequently a deformation of layer occurs and an expansion of the layer distance was observed.  相似文献   

9.
The electron spin resonance of Mn has been studied in AsxSe100?x with 0 ? x ? 70 and AsxTe100?x with 40 ? x ? 70. All samples, except those with x < 20 in AsxSe100?x, exhibit six hyperfine lines centered at g = 4.3. A g = 2.0 line is observed in As–Se with largely scattered linewidth by samples, but not in As–Te unless oxygen contamination is included in the samples. The g = 4.3 line in As–Se is closely related to a formation of As2Se3-type layer structure and interpreted as being caused by Mn situated at the interlayer position and surrounded by four Se atoms in an arrangement of rhombic symmetry. In As–Te, a similar model by four Te atoms is valid in composition near As2Te3, but the surrounding Te is replaced by As as As content increases. The g = 2.0 line is concluded to come from phase-separated antiferromagnetic particles of Mn–O and MnSe. The linewidth is scattere by differences in the relative amounts of the two kinds of particles and in particle size.  相似文献   

10.
《Journal of Non》2007,353(13-15):1232-1237
In this paper, bulk glasses with composition Agx(As33S67)100−x (x = 0–25 at.%) were investigated. Amorphous structure of samples was confirmed by X-ray diffraction analysis. The structure was deduced from Raman spectra measured for all silver contents in the As–S matrix. The thermal properties (Tg – glass-transition temperature, Ts – softening temperature, Tc – temperature of crystallization, Tm – melting temperature and Cp – specific heat capacity), were obtained from modulated differential scanning calorimetry (MDSC) and/or thermomechanical analysis (TMA). Optical properties were measured by spectral ellipsometric spectroscopy. Refractive indices were calculated using the Cauchy model from the ellipsometric parameters Ψ, Δ. Refractive index increasing toward higher silver concentration has been shown. The value of the refractive index difference (Δn) between As33S67 and Ag25(As33S67)75 is about 0.4. All studied glasses behave as ionic conductors from the point of their electrical properties. Their ac conductivity increases with increasing content of silver. As determined from the comparison of ac and dc conductivities, the contribution of electronic conductivity to the overall conductivity is very low and decreases from about 1% for the glass with 10 at.% of Ag to about 0.01% for the glass with 24 at.% of Ag.  相似文献   

11.
《Journal of Non》2007,353(16-17):1665-1669
From Dy L3-edge extended X-ray absorption fine structure spectroscopic analysis of Dy-doped Ge–As–S glass, we verified that both the coordination number and Dy–S distance are decreased in this representative chalcogenide glass compared to those in the Dy2S3 crystalline counterpart. The strong covalent nature inherent in chemical bonds between the constituent atoms of Ge–As–S glass would be responsible for the enhanced covalency of the Dy–S bonds, which would then be sensitively related to the optical characteristics of the 4f  4f transitions of Dy3+ as well as the low rare-earth solubility exhibited by the Ge–As–S glass.  相似文献   

12.
Vibrational densities of states and infrared and Raman spectra have been calculated for a structural model of As2S3 glass. The calculations are based on simple semi-empirical forms for interatomic potentials, electric dipole moment and Raman polarizability. The bands of the calculated spectra agree well with those of the observed infrared and Raman spectra of As2S3 glass in intensity and position, although a small concentration of the wrong SS bonds remains in the structural model and causes an additional peak in the higher frequency region. The calculated depolarization ratio of the Raman spectra is consistent with the observed one.  相似文献   

13.
An analysis of the atomic radial distribution function of Al0.20As0.30Te0.30, Al0.10As0.40Te0.50 and Al0.10As0.20Te0.70 amorphous alloys obtained from quenching of the molten mixture of the elements was performed. A structure in which all the Al atoms are tetrahedrally bonded to the other types of atoms in the material, would satisfy the requirements of the experimental curve. Tetrahedral groups might be linked to each other by As and Te atoms, or directly through a Te or As atom belonging to more than one tetrahedra.  相似文献   

14.
《Journal of Non》2007,353(13-15):1431-1436
One of the recent applications of thin chalcogenide films is in rewritable optical data recording. This technology is based on reversible phase transition between crystalline and amorphous state. Currently, the primary materials for rewritable optical are Ge–Sb–Te and Ag–In–Sb–Te alloys, but materials research still continues due to the need for increased storage capacity and data recording rates. (Ag)–Sb–S thin films were prepared by thermal evaporation of Sb33S67 bulk and optically induced diffusion and dissolution of thermally evaporated Ag films. Prepared samples were characterized by electron microprobe (SEM-EDX), differential scanning calorimetry (DSC) and by UV–Vis–NIR and Raman spectroscopy. The phase-change recording processes in (Ag)–Sb–S films were carried out by photocrystallization experiments done by Ar+ ion laser. The laser exposed dots were studied by scanning electron microscopy (SEM) and transmission optical microscopy. Micro X-ray diffraction (μ-XRD) was used for the exposed dots crystallinity study. Photocrystallization kinetic curves (showing the dependence of optical transmission on laser exposure time) were also established. Crystallization mechanism of Agx(Sb0.33S0.67)100−x samples was discussed.  相似文献   

15.
《Journal of Non》2006,352(23-25):2662-2666
As33S67−ySey, where y = 0, 16.75, 33.5, 50.25 and 67, amorphous thin films were prepared by a vacuum thermal evaporation technique. The films with known silver concentrations and good optical quality were prepared by thermal vacuum evaporation of a silver film on the top of As33S100−ySey films with sequential step-by-step optically- and thermally-induced diffusion and dissolution (OIDD) of silver. The range of silver content was x = 0–25 at.%. The kinetics of OIDD of silver were measured optically by monitoring the change of thickness of the undoped part of the chalcogenide during broadband illumination. Compositions of the reaction products have been determined by scanning electron microscope with energy-dispersive X-ray microanalyser EDS. Optical properties (T,n,Egopt) of thin films were measured and/or calculated by the Swanepoel method [R. Swanepoel, J. Phys. E: Sci. Instrum. 16 (1983) 1214]. The refractive index increase with increasing silver and selenium concentration has been shown. The difference of the refractive index (Δn) between undoped and silver doped films was ∼0.4 and between As33S67 and As33Se67 was films ∼0.42. Non-linear indices of refraction were estimated according to Tichy’s formula [H. Ticha, L. Tichy, J. Optoel, Adv. Mat. 4 (2002) 381]. The values of non-linear refractive index grew with increasing silver and selenium content. The difference of optical bandgap, ΔEgopt, between undoped As33S67 and fully doped films with Ag and Se was ∼1 eV. Raman spectroscopy showed a decrease in S–S or Se–Se bonds with increasing silver content.  相似文献   

16.
The electrostatic potential at the AgAs2S3 interface was investigated. In the dark, cells of a structure, Ag/As2S3/Al behaved like and an electrochemical battery. When light fell onto the cells, short-circuit currents were observed, but their appearancesvaried much, depending on the excitation wavelength and the material of the illuminated electrode. At wavelengths longer than the absorption edge of As2S3 glass, photocurrents were characteristic of the polarization current and little influenced by the external field. A model for explaining these findings was proposed on an assumption of an interface reaation between silver and vitreous As2S3 in the dark. The interfacial reaction was supposed to accompany a charge separation leading to formation of a potential barrier at the interface.  相似文献   

17.
The introduction of Ag in SiAsTe glasses permits the incorporation of Se, otherwise volatile and/or degradable as a constituent in Si-containing chalcogenide glasses. SiAsAgTeSe glasses exhibit much higher softening ranges and glass transition temperatures than encountered in known chalgogenide systems. A glass Si35As15Ag10Te20Se20 had the viscosity log ν = 13 at about 500°C, as compared to 370°C for the base glass Si35As25Te40, the viscosity of log ν = 9.8 at about 560°C, as compared to 442°C for the base glass. Phase separation occurs in the system SiAsAgTeSe and becomes manifest in two glass transitions indicated by changes in the slopes of the expansion curves and breaks in the softening point-composition relations. The existence and behavior SiAsAgTeSe glasses suggests the possible development of higher Tg i.r. transparencies and higher Tg semiconductor glasses than described so far.  相似文献   

18.
A new technique, measurement of the electrical resistance change of the Ag layer, is developed to study the kinetics of photodissolution of Ag in amorphous As2S3. It is shown that the photodissolution rate is proportional to the light intensity absorbed in the As2S3 at the As2S3Ag interface, but photoelectrons ejected from the Ag into the As2S3 also contribute. The process is shown to be two-stage. Firstly a critical “radiation damage” dose must be accumulated in the As2S3. Secondly, the Ag atom is photon-assisted across the As2S3Ag interface activation barrier.  相似文献   

19.
The infrared (IR) absorption spectra for YxZxSe100?2x glasses (Y = Ge, As;Z = As, Te), x = 2.5 and 5.0 are measured in the wavenumber region 700-60 cm?1 at room temperature. These IR spectra are explained by comparing with the IR spectra already reported for the binary glasses such as Ge–Se, As–Se and Se–Te. In GexAsxSe100-2x glasses (x ? 5.0), the main spectral features as well explained by both the spectra of GexSe100?x and AsxSe100?x glasses. Main structural units in these glasses are considered to be GeSe4 tetrahedra and AsSe3 pyramids, and Se8 rings and Sen chains which are the units in pure glassy Se. In GexTexSe100?2x glasses (x ? 5.0) and IR band which cannot be explained by either the spectra of GexSe100?x or Se100?xTex glasses appears at 210 cm?1. This band is considered to be due to Ge–Te bonds. The IR spectra of AsxTex Se100?2x glasses (x ? 5.0) are well explained by both the spectra of AsxSe100?x and Se100?xTex glasses. It is concluded that As and Te atoms combine with Se atoms in the forms of AsE3 pyramids and Se5Te3 mixed rings, respectively.  相似文献   

20.
A spherical-shaped model of Al0.20As0.50Te0.30, Al0.10As0.40Te0.50 and Al0.10As0.20Te0.70 amorphous alloys has been performed by the random Monte Carlo method. These models describe quite well the experimental radial distribution functions and abide by the expected coordination numbers apart from the threefold coordinated Te, of which an excess has appeared. The structures are formed, basically, of distorted tetrahedra around the Al atoms whose corners are occupied by As or Te atoms. Also, a separated phase model for Al0.10As0.20Te0.70 alloy has been built taking into account the results of thermodynamical study on this amorphous alloy system. The fitting of this model was better than that of the model generated under the hypothesis of a continuous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号