首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract– We have examined the relationship between natural thermoluminescence (TL) and 26Al in 120 Antarctic meteorites in order to explore the orbital history and terrestrial ages of these meteorites. Our results confirm the observations of Hasan et al. (1987) which were based on 23 meteorites. For most meteorites there was a positive correlation between natural TL and 26Al, reflecting their similarity in decay rate under Antarctic conditions and thus in terrestrial age. For a small group with low TL and high 26Al a small perihelion was proposed. Within this group, natural TL decreases with terrestrial age as determined by 36Cl measurements, although the rate of TL decay is faster (half‐life approximately 10 ka) and the ages that can be determined are smaller (<200 ka) than for most meteorites. The faster decay rate and lower natural TL levels are a reflection of recent exposure to higher radiation doses and higher temperatures, since this history would populate less stable TL traps with smaller electron densities. We sort the 120 meteorites by perihelion and terrestrial age. The normal perihelion group range up to approximately 1000 ka and the small perihelion group range up to approximately 200 ka. An intermediate perihelion group tends to have short terrestrial ages (20–60 ka). There is acceptable agreement between most (34 out of 43) of our present terrestrial age estimates and those determined by isotopic means, the exceptions reflecting complex irradiation histories, long burial times in the Antarctic, or other issues.  相似文献   

2.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

3.
Abstract We report on a series of 27 14C terrestrial ages of meteorites from four states in the central and southwestern USA. These results were compared to the earlier work of Boeckl (1972). Our results showed that the weathering rate for destruction of meteorites is lower than suggested by Boeckl (1972). We estimated a “half-life” for removal of meteorites of about 10 to 15 ka, similar to that derived for Roosevelt County meteorites. We also studied the weathering of these meteorites compared to terrestrial age. Only a weak correlation was observed, and for these meteorites the degree of weathering can only be taken as a weak indicator of terrestrial residence time. We also measured the δ 13C and 14C and amount of weathering-product carbonates which show some interesting variations with the length of time the meteorites have been exposed to weathering.  相似文献   

4.
Organic matter in astromaterials can provide important information for understanding the chemistry of our solar system and the prebiotic conditions of the early Earth. However, once astromaterials reach the Earth's surface, they can be readily contaminated through contact with the Earth's surface as well as during processing and curation. Here, we investigate how typical handling and curation materials interact with meteorite specimens by documenting hydrophobic organic compound contamination in the laboratory environment and on materials that might be used for their collection and storage. We use gas chromatography–mass spectrometry analysis of soluble organic compounds in dichloromethane extracts of these materials to gain insights into what materials and methods are best for the collection and curation of astromaterials. Our results have implications for how extraterrestrial samples—especially those containing significant intrinsic organic matter—are handled and curated to preserve them in their most pristine states. Following recommendations of other researchers in the area of returned sample curation, we advocate for a thorough investigation into the materials used in handling and curation of meteorites to create a contamination baseline to inform soluble organic analyses on astromaterials and enable the discrimination of terrestrial and extraterrestrial compounds.  相似文献   

5.
6.
Abstract— The Azuara structure is the largest one proposed so far in Spain as possibly related to a cosmic impact event. A review of the evidence set forward in favor of and against its cosmic origin indicates that the discussion is not yet finished. Some megascopic features (inverted stratigraphy, megabreccia, negative gravity anomalies) and shock‐metamorphic effects (planar deformational features) have been described in relation with the structure, although their real significance has been questioned and is still being debated. Comparison with other similar‐sized verified impacts suggests that unequivocal impactogenic features are yet to be found before the Azuara structure can be related to a cosmic impact. Until then, the Azuara structure should be considered as an unverified impact structure, and should not be included in global comprehensive maps of terrestrial impact structures.  相似文献   

7.
A model for the energy balance and chemical equilibrium of the gas in photodissociation regions at the edge of molecular clouds, which are illuminated by strong FUV fields (6 eV ≦ hv ≦ 13.6 eV), has been developed. This model is used to calculate the emergent intensities in the fine structure lines of OI (63 μm, 145 μm), CI (609 μm, 370 μm), and CII (158 μm) and in the low-lying rotational transitions of CO. The numerical results show that column densities in the range 2 × 1017 to 2 × 1018 cm2 can be expected from the C+/C/CO transition region at the edge of molecular clouds. This difference with previous chemical calculations is partly due to a higher assumed carbon abundance, partly due to the charge exchange reactions of C+ with S and SiO, and partly due to carbon self-shielding which is taken into account. A detailed model is constructed for the Orion photodissociation region, which explains the observed OI (63 μm, 145 μm), CII (158 μm), CI (609 μm), and CO emission. In this model the CI (609 μm) emission originates in the warm (50°K) molecular gas behind Θ1C Ori but near the surface of OMCI.  相似文献   

8.
Abstract— Asteroid 4 Vesta, believed to be the parent body of the howardite, eucrite, and diogenite (HED) meteorites, will be investigated by the Dawn orbiting spacecraft. Dawn carries a gamma ray and neutron detector (GRaND) that will measure and map some major‐ and trace‐element abundances. Drawing on HED geochemistry, we propose a mixing model that uses element ratios appropriate for the interpretation of GRaND data. Because the spatial resolution of GRaND is relatively coarse, the analyzed chemical compositions on the surface of Vesta will likely reflect mixing of three endmember components: diogenite, cumulate eucrite, and basaltic eucrite. Reliability of the mixing model is statistically investigated based on published whole‐rock data for HED meteorites. We demonstrate that the mixing model can accurately estimate the abundances of all the GRaND‐analyzed major elements, as well as of minor elements (Na, Cr, and Mn) not analyzed by this instrument. We also show how a similar mixing model can determine the modal abundance of olivine, and we compare estimated and normative olivine data for olivine‐bearing diogenites. By linking the compositions of well‐analyzed HED meteorites with elemental mapping data from GRaND, this study may help constrain the geological context for HED meteorites and provide new insight into the magmatic evolution of Vesta.  相似文献   

9.
The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. The major organic component in these meteorites is a macromolecular phase that is resistant to solvent extraction. The information contained within macromolecular material can be accessed by degradative techniques such as pyrolysis. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed sulphided molybdenum catalyst. Hydropyrolysis of the Murchison macromolecular material successfully releases much greater quantities of hydrocarbons than traditional pyrolysis techniques (twofold greater than hydrous pyrolysis) including significant amounts of high molecular weight polyaromatic hydrocarbons (PAH) such as phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alkylation. When hydropyrolysis products are collected using a silica trap immersed in liquid nitrogen, the technique enables the solubilisation and retention of compounds with a wide range of volatilities (i.e. benzene to coronene). This report describes the hydropyrolysis method and the information it can provide about meteorite macromolecular material constitution.  相似文献   

10.
Abstract— Using a nuclear microprobe, we measured the carbon and nitrogen concentrations and distributions in several interplanetary dust particles (IDPs) and Antarctic micrometeorites (MMs), and compared them to 2 carbonaceous chondrites: Tagish Lake and Murchison. We observed that IDPs are richest in both elements. All the MMs studied contain carbon, and all but the coarse‐grained and 1 melted MM contained nitrogen. We also observed a correlation in the distribution of carbon and nitrogen, suggesting that they may be held in an organic material. The implications for astrobiology of these results are discussed, as small extraterrestrial particles could have contributed to the origin of life on Earth by delivering important quantities of these 2 bio‐elements to the Earth's surface and their gas counterparts, CO2 and N2, to the early atmosphere.  相似文献   

11.
Abstract— Natural and induced thermoluminescence (TL) data are reported for 12 meteorites recovered from the Allan Hills region of Antarctica by the European field party during the 1988/89 field season. The samples include one with extremely high natural TL, ALH88035, suggestive of exposure to unusually high radiation doses (i.e., low degrees of shielding), and one, ALH88034, whose low natural TL suggests reheating within the last 105 years. The remainder have natural TL values suggestive of terrestrial ages similar to those of other meteorites from Allan Hills. ALH88015 (L6) has induced TL data suggestive of intense shock. TL sensitivities of these meteorites are generally lower than observed falls of their petrologic types, as is also observed for Antarctic meteorites in general. Acid-washing experiments indicate that this is solely the result of terrestrial weathering rather than a nonterrestrial Antarctic—non-Antarctic difference. However, other TL parameters, such as natural TL and induced peak temperature-width, are unchanged by acid washing and are sensitive indicators of a meteorite's metamorphic and recent radiation history.  相似文献   

12.
A search was conducted for the three 9-cm transitions of the ground state Λ-doublet of CH in comet Kohoutek, using the CSIRO 64-m radio telescope and the Onsala Space Observatory's 25.6-m telescope. No lines were detected during the observing periods, and upper limits are given for the corresponding antenna temperatures.  相似文献   

13.
Using multipoint measurements from the Cluster mission wave identification techniques are applied to observations of ULF waves made in the terrestrial foreshock with the aim of identifying the modes and properties of the waves taking into account the effects of a high beta plasma. The wave properties in the spacecraft and plasma rest frames are experimentally derived using minimum variance analysis. Two waves with periods of 30 and 3 s dominate the dynamic frequency spectrum. The results indicate that these waves propagate in the fast magnetosonic and Alfvén/Ion Cyclotron modes, respectively. Both waves propagate in the upstream direction in the plasma rest frame but are convected downstream in the spacecraft frame. The measured wave properties in the plasma rest frame are in good agreement with those obtained from the theoretical kinetic dispersion relation taking into account the effects of different plasma beta. The dispersion results show a rather significant deviation from fluid model, especially when high beta plasma conditions occur. These experimentally derived foreshock ULF wave properties are in good agreement with previous results but when the effects of a high beta plasma are considered it is not as straight forward to choose the correct wave mode branch.  相似文献   

14.
We present near-infrared (1–2.5 μm) spectroscopic and photometric results of Nova V2615 Ophiuchi which was discovered in outburst in 2007 March. Our observations span a period of ∼80 d starting from 2007 March 28 when the nova was at its maximum light. The evolution of the spectra is shown from the initial P Cygni phase to an emission-line phase and finally to a dust formation stage. The characteristics of the JHK spectra are very similar to those observed in a nova outburst occurring on a carbon–oxygen white dwarf. We analyse an observed line at 2.088 μm and suggest that it could be due to Fe  ii excited by Lyman α fluorescence. The highlight of the observations is the detection of the first overtone bands of carbon monoxide (CO) in the 2.29–2.40 μm region. The CO bands are modelled to estimate the temperature and mass of the emitting CO gas and also to place limits on the 12C/13C ratio. The CO bands are recorded over several epochs, thereby allowing a rare opportunity to study the evolution from a phase of constant strength through a stage when the CO is destroyed fairly rapidly. We compare the observed time-scales involved in the evolution of the CO emission and find a good agreement with model predictions that investigate the chemistry in a nova outflow during the early stages.  相似文献   

15.
Antarctic Survey Telescopes(AST3) are designed to be fully robotic telescopes at Dome A,Antarctica,which aim for highly efficient time-domain sky surveys as well as rapid response to special transient events(e.g.,gamma-ray bursts,near-Earth asteroids,supernovae,etc.).Unlike traditional observations,a well-designed real-time survey scheduler is needed in order to implement an automatic survey in a very efficient,reliable and flexible way for the unattended telescopes.We present a study of the survey strategy for AST3 and implementation of its survey scheduler,which is also useful for other survey projects.  相似文献   

16.
17.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   

18.
Mid-infrared (5–25 μm) transmission/absorption spectra of differentiated meteorites (achondrites) were measured to permit comparison with astronomical observations of dust in different stages of evolution of young stellar objects. In contrast to primitive chondrites, achondrites underwent heavy metamorphism and/or extensive melting and represent more advanced stages of planetesimal evolution. Spectra were obtained from primitive achondrites (acapulcoite, winonaite, ureilite, and brachinite) and differentiated achondrites (eucrite, diogenite, aubrite, and mesosiderite silicates). The ureilite and brachinite show spectra dominated by olivine features, and the diogenite and aubrite by pyroxene features. The acapulcoite, winonaite, eucrite, and mesosiderite silicates exhibit more complex spectra, reflecting their multi-phase bulk mineralogy.Mixtures of spectra of the primitive achondrites and differentiated achondrites in various proportions show good similarities to the spectra of the few Myr old protoplanetary disks HD104237A and V410 Anon 13. A spectrum of the differentiated mesosiderite silicates is similar to the spectra of the mature debris disks HD172555 and HD165014. A mixture of spectra of the primitive ureilite and brachinite is similar to the spectrum of the debris disk HD113766. The results raise the possibility that materials produced in the early stage of planetesimal differentiation occur in the protoplanetary and debris disks.  相似文献   

19.
The detection of extrasolar planets by measuring a photometric drop in the stellar brightness due to a planetary transit can be statistically improved by observing eclipsing binary systems and photometrically improved by observing small component systems. In particular the system CM Draconis, with two dM4 components, would allow the detection of extrasolar planets in the size range of Earth-to-Neptune requiring a ground-based photometric precision of about 0.08% to 1.1% (photometric precision of about 0.3% is routinely achievable with 1-meter class telescopes at the magnitude of CM Draconis, 11.07 inR-filter). In addition, the transit of extrasolar planets in a binary star system provides a unique, quasi-periodic signal that can be cross-correlated with the observational data to detect sub-noise signals. We examine the importance of making such observations to an understanding of the formation and evolution of terrestrial-type planets in main-sequence star systems. Terrestrial planets could have formed with substancially shorter periods in this lower luminosity system, for example, and might be expected to have accreted essentially in the binary orbital plane (however, non-coplanar planets may also eventually be detectable due to precession). We also report on a network of medium-sized telescopes at varying longitudes that have been organized to provide such constraints on terrestrial-planet formation processes and discuss the extention of near-term observations to other possible binary systems, as well. Finally, we discuss a more speculative, future observation that could be performed on the CM Draconis system that would be of exobiological as well as astrophysical interest.  相似文献   

20.
The behavior of rare earth elements (REEs) during hot desert weathering of meteorites is investigated. Ordinary chondrites (OCs) from Atacama (Chile) and Lut (Iran) deserts show different variations in REE composition during this process. Inductively coupled plasma–mass spectrometry (ICP‐MS) data reveal that hot desert OCs tend to show elevated light REE concentrations, relative to OC falls. Chondrites from Atacama are by far the most enriched in REEs and this enrichment is not necessarily related to their degree of weathering. Positive Ce anomaly of fresh chondrites from Atacama and the successive formation of a negative Ce anomaly with the addition of trivalent REEs are similar to the process reported from Antarctic eucrites. In addition to REEs, Sr and Ba also show different concentrations when comparing OCs from different hot deserts. The stability of Atacama surfaces and the associated old terrestrial ages of meteorites from this region give the samples the necessary time to interact with the terrestrial environment and to be chemically modified. Higher REE contents and LREE‐enriched composition are evidence of contamination by terrestrial soil. Despite their low degrees of weathering, special care must be taken into account while working on the REE composition of Atacama meteorites for cosmochemistry applications. In contrast, chondrites from the Lut desert show lower degrees of REE modification, despite significant weathering signed by Sr content. This is explained by the relatively rapid weathering rate of the meteorites occurring in the Lut desert, which hampers the penetration of terrestrial material by forming voluminous Fe oxide/oxyhydroxides shortly after the meteorite fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号