首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
壳聚糖复合絮凝剂处理含油废水   总被引:1,自引:0,他引:1  
壳聚糖复合絮凝剂处理含油废水,正交实验结果分析表明:pH值为7,PAM量为2mg/L,壳聚糖量为2mg/L时,对废水化学耗氧量(COD)去除率可达47.33%;pH值为7.PAM量为1mg/L,壳聚糖量为8mg/L时,对废水浊度处理得到较为满意的效果,浊度去除率可达91.73%。对浊度和COD去除率的影响因素主次顺序是:pH值〉PAM投加量〉搅拌时间〉壳聚糖投加量。  相似文献   

2.
谭蕾 《河北化工》2011,34(10):58-59,62
以戊二醛作交联剂,制备出了CS-Fe3O4磁性微球,并将其用于处理造纸废水。实验结果表明,废水pH值约为5、初始COD值为1 500 mg.L-1时,COD去除率约为83%,处理效果较好。  相似文献   

3.
采用微电解+Fenton法处理DDNP废水,考虑微电解系统的活性炭的投加量,Fe/C,pH,反应时间等因素在不同条件下原水的COD去除情况及色度变化。实验结果表明,最佳pH为4,Fe的投加量为30 g/L,最佳Fe/C为3/2,最佳反应时间60 min。COD的去除最高可达到58.8%。Fenton系统H2O2的投加量为4 mg/L,微电解+Fenton系统的COD去除率为87.53%。  相似文献   

4.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

5.
针对高浓度煤化工废水絮凝沉淀预处理过程中采用传统絮凝剂处理效率不高的问题,以丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和改性阳离子单体(WA-1)为原料,并引入改性纳米Fe3O4,制备了一种适用于高浓度煤化工废水絮凝预处理的新型磁性复合絮凝剂AFC-Ⅱ。红外光谱和能谱分析结果表明,各种单体均参与了聚合反应。高浓度煤化工废水絮凝处理实验结果表明,当新型磁性复合絮凝剂AFC-Ⅱ加量为800 mg/L、废水pH为8、搅拌速度为120 r/min、搅拌时间为8 min、沉降时间为15 min时,高浓度煤化工废水中COD的去除率最高,可以达到96.74%。在实验条件均相同的情况下,新型磁性复合絮凝剂AFC-Ⅱ对实验用高浓度煤化工废水中COD的去除率明显高于其他几种常用的絮凝剂。研究结果证明,该新型磁性复合絮凝剂AFC-Ⅱ可以有效提高高浓度煤化工废水的絮凝处理效率,为此类废水的后续深度处理奠定良好的基础。  相似文献   

6.
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH=3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%。Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2 O2投加量为11 mL/L,反应时间为100 min,出水COD为4 480 mg/L,COD总去除率为63.8%。垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果。  相似文献   

7.
采用Fe/C微电解—Fenton氧化法处理松节油加工废水,Fe/C微电解单元主要研究了铁屑投加量、铁炭比、pH对处理效果的影响;Fenton氧化单元主要研究了H2O2投加量、超声、UV对Fenton处理效果的影响。结果表明:在铁屑投加量为100 g/L,铁炭比为1,pH为2时,COD、色度的去除率达到84.2%、96%,B/C从0.12升高到0.41;在H2O2投加量为8 mL,pH为3,超声功率为100 W的条件下,COD去除率达到98.5%,B/C从0.41提高到0.65,最终处理后废水COD≤100 mg/L,色度≤5。  相似文献   

8.
以等体积浸渍法制备了负载型Fe2O3/γ-Al2O3催化剂,分别采用XRD、SEM和BET对催化剂结构进行了表征。研究了Fe2O3/γ-Al2O3催化氧化深度处理造纸废水的工艺,分别考察了反应温度、催化剂加入量、H2O2加入量等因素对造纸废水降解效果的影响,得出较佳的催化氧化处理造纸废水的工艺条件。在反应温度为70℃,催化剂投加质量浓度为2.5 g/L,H2O2投加质量浓度为3.7 g/L,pH=8.10,反应时间90 min条件下,造纸废水COD去除率可达86.2%,脱色率达到98.6%以上。催化剂稳定性高,铁离子析出质量浓度为0.08 mg/L,对反应影响可以忽略。  相似文献   

9.
有机高分子絮凝剂处理炼油废水的初步研究   总被引:1,自引:0,他引:1  
薛媛  李世强 《应用化工》2010,39(7):1069-1073
用有机高分子絮凝剂聚丙烯酰胺(PAM)与壳聚糖分别处理炼油废水,考察了pH、温度、絮凝剂投加量、沉降时间等因素对絮凝效果的影响。结果表明,壳聚糖的处理效果优于PAM;PAM处理炼油废水的最佳条件为:用量3 mg/L,pH为8,温度30℃,沉降时间40 min,此时石油类物质的去除率达97.96%,COD去除率达90.92%,NH3—N去除率达54.36%;壳聚糖处理炼油废水的最佳条件为:用量100 mg/L,pH为8,温度35℃,沉降时间40 min,此时石油类物质的去除率达98.33%,COD去除率达92.25%,NH3—N去除率达52.60%。  相似文献   

10.
采用FeCl_3·6H_2O及硫酸亚铁铵制备纳米Fe_3O_4,并将其应用于强化PAC混凝沉淀处理印染废水,结果显示所制备的纳米Fe_3O_4对PAC处理印染废水的效果有着明显的增强作用,以PAC及纳米Fe_3O_4的投加浓度分别为2.5 g/L及2.0 g/L条件下所制备的复合混凝剂在废水初始pH值为6.5,搅拌速度300 r/min,反应时间为20 min时,其COD及色度的去除率可达54.09%及90.72%。  相似文献   

11.
铝-钛交联改性膨润土在处理废水中的应用研究   总被引:1,自引:0,他引:1  
孙伶  邵红 《辽宁化工》2006,35(5):271-273
以钠基膨润土为原料,制备了铝钛交联改性膨润土,并应用于实验室废水的处理,考察了pH值,改性膨润土的用量和搅拌时间对废水的COD、浊度和色度去除率的影响。当pH=4,投加量为6g/L,搅拌时间为30 min时,COD最高去除率为50.90%;当pH=5,投加量为6 g/L,搅拌时间为30 min时,浊度的最高去除率为92.10%;当pH=3,投加量为6 g/L,搅拌时间为30 min时,色度的最高去除率为94.00%。  相似文献   

12.
刘小丹  余国锋 《广州化工》2022,(21):52-55+67
课题利用化学共沉淀法制备出Fe3O4粒子,在壳聚糖溶液中加入Fe3O4粒子进行改性,成功制备出磁性壳聚糖微球。课题以Pb2+作为吸附目标,探究了磁性壳聚糖微球对Pb2+的吸附的最优条件,并对磁性壳聚糖微球进行回收、再利用。结果表明,50 mL,50 mg/L Pb2+溶液投加量为150 mg、pH为6、温度35℃、时间为1 h是吸附实验的最佳条件,制备的吸附剂具有较好的吸附量和Pb2+去除率,且能够实现回收再生,具有环境友好性。  相似文献   

13.
UV-Fenton法处理草浆造纸废水的研究   总被引:8,自引:0,他引:8  
采用UV-Fenton法对自偶氧化清洁制浆造纸废水进行处理.考察了废水pH、H2O2投加量、Fe2 投加量、反应时间以及紫外光强等对废水中CODCr去除率的影响,得到了最佳的工艺条件为pH 3.53、H2O2投加浓度46.19mmol/L、Fe2 投加浓度3.06 mmol/L,反应60 min后CODCr去除率达到67.13%,出水CODCr降到428 mg/L,改善了废水的可生化性,有利于进一步进行生化处理.  相似文献   

14.
水解酸化—好氧MBBR耦合Fenton法处理抗生素废水研究   总被引:4,自引:0,他引:4  
采用水解酸化—好氧移动床生物膜(MBBR)串联Fenton工艺处理抗生素废水,探讨了pH、HRT等对水解酸化以及Fe2 浓度和H2O2投加量对Fenton工艺的影响。实验结果表明,对于COD为6800.62mg/L、B/C<0.3的抗生素废水,当水解段pH和HRT分别为6.5和12h时,挥发酸(VFA)质量浓度为931.75mg/L,COD去除率为26.59%,此时水解酸化—好氧段出水COD为1229.80mg/L,COD总去除率为81.92%。再经Fenton工艺深度处理,当Fe2 最佳投加质量浓度为240mg/L,H2O2投加量为3.19mL/L时,总COD去除率可达97.38%,最终出水COD为178.50mg/L,达到制药工业废水排放标准。  相似文献   

15.
Fe/Cu催化内电解-Fenton法联合处理三氯乙酸废水的研究   总被引:3,自引:2,他引:1  
采用Fe/Cu内电解-Fenton法联合处理三氯乙酸废水。考察了Fe与Cu质量比、pH值和H2O2投加量等因素对废水处理效果的影响。确定了联合处理法的最佳工艺条件:催化内电解过程中Fe与Cu质量比为4:1、pH值为4、搅拌时间为50min;Fenton法阶段中pH值为4、H2O2加入量为10mL/L并分批投加、搅拌时间为40min。在最佳工况条件下,联合工艺处理质量浓度为100mg/L的三氯乙酸废水脱氯率达80.1%,COD去除率达78.4%。使用联合法处理废水,能有效提高处理效果,可以处理较高浓度的三氯乙酸废水。  相似文献   

16.
本研究采用化学混凝-芬顿氧化联合法处理某膏药生产处理废水。混凝试验结果表明:当采用聚合硫酸铁,且投加量为1000 mg/L,混凝时间3 h,pH值8.0时,废水COD去除率为37.0%,水处理处理效果较好。芬顿氧化试验表明:H2O2和Fe2+投加量分别为80mg/L和60 mg/L,反应时间为80min,pH值为3.0时COD去除率达89.1%。化学混凝芬顿氧化联合试验表明:该废水的COD去除率可达90.1%,出水较为清澈。  相似文献   

17.
Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究   总被引:6,自引:0,他引:6  
采用Fenton氧化-活性炭吸附协同处理工艺对抗生素制药废水二级生化出水进行了研究。探讨了温度、pH值、H2O2投加量、Fe2 投加量、反应时间,活性炭投加量及投加方式对COD去除率的影响。结果表明:在温度为30℃,pH值为5,H2O2(30%)投加量为300mg/L,FeSO4·7H2O投加量为80mg/L,反应时间为120min,活性炭投加量为50mg/L且与Fenton试剂同时加入时,COD去除率可达68.5%,处理出水达到了国家一级排放标准。  相似文献   

18.
Fenton氧化技术深度处理棉浆黑液的试验研究   总被引:1,自引:0,他引:1  
采用Fenton氧化技术对棉浆黑液废水进行深度处理,通过单因素与正交试验,研究了pH、FeSO4投加量、H2O2投加量和反应时间等因素对COD去除率的影响,分析了各影响因子的作用机理。结果表明,处理废水的最佳条件为:废水初始pH=7、FeSO4投加浓度80mmol/L、H2O2投加浓度0.15mol/L、反应时间40min,在此条件下黑液COD去除率98%,处理后黑液的COD为45mg/L,达到国家化纤废水一级排放标准(COD100mg/L)。  相似文献   

19.
磁聚复配物絮凝预处理维生素C废水的研究   总被引:2,自引:0,他引:2  
针对维生素C废水生化处理难度大、处理效率低等问题,采用磁聚复配物絮凝预处理维生素C废水,讨论了pH、复配物用量、搅拌速度与时间、温度、磁场强度等对处理效果的影响.实验结果显示,在pH 5~6,40mg/L壳聚糖与100 mg/L Fe3O4复配,搅拌速度200 r/min下搅拌5 min,温度35~40℃,外加磁场(0.5 T)作用1 min的情况下,维生素C废水的絮凝率达到99.6%,COD去除率为87.5%,表明磁聚复配物对维生素C废水不仅有很好的净化效果,且可显著提高固液分离的速度.  相似文献   

20.
用微波-Fenton氧化法深度处理焦化废水,研究了微波处理时间、微波功率、FeSO4投加量、H2O2投加量、H2O2投加次数和pH值的影响。实验确定的最佳工艺条件为:废水pH为3,FeSO4投加量为300mg/L,H2O2总投加量为900mg/L,H2O2分3次投加,微波功率500W,温度设为50℃,反应时间为30min。废水浊度、色度和COD去除率分别为97.59%、95.62%、86.21%。处理后的废水澄清透明,剩余COD为50.34mg/L,浊度、色度和COD达到工业回用水标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号