首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyme disease, caused by the bacterium Borrelia burgdorferi and transmitted in the eastern United States by the black-legged tick (Ixodes scapularis), is increasing in incidence and expanding geographically. Recent environmental modeling based on extensive field collections of host-seeking I. scapularis ticks predicted a coastal distribution of ticks in mid-Atlantic states and an elevational limit of 510 m. However, human Lyme disease cases are increasing most dramatically at higher elevations in Virginia, a state where Lyme disease is rapidly emerging. Our goal was to explore the apparent incongruity, during 2000–2011, between human Lyme disease data and predicted and observed I. scapularis distribution. We found significantly higher densities of infected ticks at our highest elevation site than at lower elevation sites. We also found that I. scapularis ticks in Virginia are more closely related to northern than to southern tick populations. Clinicians and epidemiologists should be vigilant in light of the changing spatial distributions of risk.  相似文献   

2.
3.
《Ticks and Tick》2022,13(2):101885
Lyme disease is the most common tick-borne illness in the United States and is becoming more prevalent each year. It is transmitted to humans and animals through the bites of Ixodes scapularis ticks infected with Borrelia burgdorferi in the eastern United States, I. pacificus in the western U.S, and I. ricinus in Europe and Asia. In Kentucky, where Lyme disease is non-endemic, the number of reported human cases in 2010 totaled five. In 2019, that number had increased by over 300%. Identifying the distribution of I. scapularis populations infected with B. burgdorferi is important data for effective prevention strategies and an important first step in monitoring disease spread. In collaboration with the Kentucky Department for Public Health, we performed surveillance for I. scapularis throughout the state of Kentucky using both active and passive surveillance methods. Diagnostic testing for the identification of B. burgdorferi (sensu stricto) was also conducted. We identified 457 I. scapularis ticks from March 2019 to December 2020 from 32 counties in Kentucky. B. burgdorferi was detected in I. scapularis populations collected from 14 different counties. These results add to the little data that exists in Kentucky on I. scapularis and B. burgdorferi distribution.  相似文献   

4.

Background

Northward expansion of the tick Ixodes scapularis is driving Lyme disease (LD) emergence in Canada. Information on mechanisms involved is needed to enhance surveillance and identify where LD risk is emerging.

Objectives

We used passive and active surveillance and phylogeographic analysis of Borrelia burgdorferi to investigate LD risk emergence in Quebec.

Methods

In active surveillance, we collected ticks from the environment and from captured rodents. B. burgdorferi transmission was detected by serological analysis of rodents and by polymerase chain reaction assays of ticks. Spatiotemporal trends in passive surveillance data assisted interpretation of active surveillance. Multilocus sequence typing (MLST) of B. burgdorferi in ticks identified likely source locations of B. burgdorferi.

Results

In active surveillance, we found I. scapularis at 55% of sites, and we were more likely to find them at sites with a warmer climate. B. burgdorferi was identified at 13 I. scapularis–positive sites, but infection prevalence in ticks and animal hosts was low. Low infection prevalence in ticks submitted in passive surveillance after 2004—from the tick-positive regions identified in active surveillance—coincided with an exponential increase in tick submissions during this time. MLST analysis suggested recent introduction of B. burgdorferi from the northeastern United States.

Conclusions

These data are consistent with I. scapularis ticks dispersed from the United States by migratory birds, founding populations where the climate is warmest, and then establishment of B. burgdorferi from the United States several years after I. scapularis have established. These observations provide vital information for public health to minimize the impact of LD in Canada.  相似文献   

5.
To elucidate features of enzootic maintenance of the Lyme disease bacterium that affect human risk of infection, we conducted a longitudinal study of the phenology of the vector tick, Ixodes scapularis, at a newly invaded site in the north-central United States. Surveys for questing ticks and ticks parasitizing white-footed mice and eastern chipmunks revealed that I. scapularis nymphal and larval activity peaked synchronously in June and exhibited an atypical, unimodal seasonality. Adult seasonal activity was bimodal and distributed evenly in spring and fall. We discuss implications of these phenology data for the duration of the I. scapularis life cycle. Densities of Borrelia burgdorferi-infected, questing nymphs were comparable to those found in endemic areas elsewhere in the midwestern and northeastern U.S. Molecular genetic diversity of B. burgdorferi infecting these ticks and rodents was assessed by analysis of the ribosomal spacer types (RSTs). RST 1, a clade that includes strains with highly pathogenic properties, was relatively uncommon (3.4%) in contrast to the northeastern U.S., whereas less pathogenic ribotypes of the RST 2 and 3 clades were more common. These features of the ecology of this midwestern Lyme disease system likely contribute to the lower incidence of Lyme disease in humans in the Upper Midwest compared with that of the Northeast owing to reduced exposure to pathogenic strains of B. burgdorferi.  相似文献   

6.
《Ticks and Tick》2022,13(5):102000
Lyme disease is the most commonly reported vector-borne disease in the United States (US), with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble of statistical models for both acarological risk metrics. Overall accuracy of these suitability models was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). We sought to compare which acarological risk metric best described the distribution of counties reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the models to a fixed omission rate (10%). We compared the percent of high incidence counties correctly classified by the two models. The I. scapularis consensus map correctly classified 53% of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and were not classified as high incidence. These counties were considered to represent a leading edge for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, and Ohio. This information can aid in targeting tick surveillance and prevention education efforts in counties where Lyme disease risk may increase in the future.  相似文献   

7.
《Ticks and Tick》2022,13(6):102018
Lyme disease, caused primarily in North America by the bacterium Borrelia burgdorferi sensu stricto, is the most frequently reported vector-borne disease in North America and its geographic extent is increasing in all directions from foci in the northeastern and north central United States. Several southeastern states, including Virginia and North Carolina, have experienced large increases in Lyme disease incidence in the past two decades, with the biggest changes in incidence occurring in the western portion of each state. We tested the hypothesis that B. burgdorferi s.s. was present in western Virginia and North Carolina Peromyscus leucopus populations prior to the recent emergence of Lyme disease. Specifically, we examined archived P. leucopus museum specimens, sampled between 1900 and 2000, for B. burgdorferi s.s. DNA. After confirming viability of DNA extracted from ear punch biopsies from P. leucopus study skins collected between 1945 and 2000 in 19 Virginia counties and 17 North Carolina counties, we used qPCR of two species-specific loci to test for the presence of B. burgdorferi s.s. DNA. Ten mice, all collected from the Eastern Shore of Virginia in 1989, tested positive for presence of B. burgdorferi; all of the remaining 344 specimens were B. burgdorferi-negative. Our results suggest that B. burgdorferi s.s was not common in western Virginia or North Carolina prior to the emergence of Lyme disease cases in the past two decades. Rather, the emergence of Lyme disease in this region has likely been driven by the relatively recent expansion of B. burgdorferi s.s. in southward-moving ticks and reservoir hosts in the mountainous counties of these two states.  相似文献   

8.
《Ticks and Tick》2022,13(2):101886
The geographic range of the blacklegged tick, Ixodes scapularis, and its associated human pathogens have expanded substantially over the past 20 years putting an increasing number of persons at risk for tick-borne diseases, particularly in the upper midwestern and northeastern United States. Prevention and diagnosis of tick-borne diseases rely on an accurate understanding by the public and health care providers of when and where persons may be exposed to infected ticks. While tracking changes in the distribution of ticks and tick-borne pathogens provides fundamental information on risk for tick-borne diseases, metrics that incorporate prevalence of infection in ticks better characterize acarological risk. However, assessments of infection prevalence are more labor intensive and costly than simple measurements of tick or pathogen presence. Our objective was to examine whether data derived from repeated sampling at longitudinal sites substantially influences public health recommendations for Lyme disease and anaplasmosis prevention, or if more constrained sampling is sufficient. Here, we summarize inter-annual variability in prevalence of the agents of Lyme disease (Borrelia burgdorferi s.s.) and anaplasmosis (Anaplasma phagocytophilum) in host-seeking I. scapularis nymphs and adults at 28 longitudinal sampling sites in the Upper Midwestern US (Michigan, Minnesota, and Wisconsin). Infection prevalence was highly variable among sites and among years within sites. We conclude that monitoring infection prevalence in ticks aids in describing coarse acarological risk trends, but setting a fixed prevalence threshold for prevention or diagnostic decisions is not feasible given the observed variability and lack of temporal trends. Reducing repeated sampling of the same sites had minimal impact on regional (Upper Midwest) estimates of average infection prevalence; this information should be useful in allocating scarce public health resources for tick and tick-borne pathogen surveillance, prevention, and control activities.  相似文献   

9.

Background

Lyme disease is the commonest vector-borne zoonosis in the temperate world, and an emerging infectious disease in Canada due to expansion of the geographic range of the tick vector Ixodes scapularis. Studies suggest that climate change will accelerate Lyme disease emergence by enhancing climatic suitability for I. scapularis. Risk maps will help to meet the public health challenge of Lyme disease by allowing targeting of surveillance and intervention activities.

Results

A risk map for possible Lyme endemicity was created using a simple risk algorithm for occurrence of I. scapularis populations. The algorithm was calculated for each census sub-division in central and eastern Canada from interpolated output of a temperature-driven simulation model of I. scapularis populations and an index of tick immigration. The latter was calculated from estimates of tick dispersion distances by migratory birds and recent knowledge of the current geographic range of endemic I. scapularis populations. The index of tick immigration closely predicted passive surveillance data on I. scapularis occurrence, and the risk algorithm was a significant predictor of the occurrence of I. scapularis populations in a prospective field study. Risk maps for I. scapularis occurrence in Canada under future projected climate (in the 2020s, 2050s and 2080s) were produced using temperature output from the Canadian Coupled Global Climate Model 2 with greenhouse gas emission scenario enforcing 'A2' of the Intergovernmental Panel on Climate Change.

Conclusion

We have prepared risk maps for the occurrence of I. scapularis in eastern and central Canada under current and future projected climate. Validation of the risk maps provides some confidence that they provide a useful first step in predicting the occurrence of I. scapularis populations, and directing public health objectives in minimizing risk from Lyme disease. Further field studies are needed, however, to continue validation and refinement of the risk maps.  相似文献   

10.
The center of origin theory predicts that genetic diversity will be greatest near a specie’s geographic origin because of the length of time for evolution. By corollary, diversity will decrease with distance from the origin; furthermore, invasion and colonization are frequently associated with founder effects that reduce genetic variation in incipient populations. The blacklegged tick, Ixodes scapularis, harbors a suite of zoonotic pathogens, and the geographic range of the tick is expanding in the upper Midwestern United States. Therefore, we posited that diversity of I. scapularis-borne pathogens across its Midwestern range should correlate with the rate of the range expansion of this tick as well as subsequent disease emergence. Analysis of 1565 adult I. scapularis ticks from 13 sites across five Midwestern states revealed that tick infection prevalence with multiple microbial agents (Borrelia burgdorferi, Borrelia miyamotoi, Babesia odocoilei, Babesia microti, and Anaplasma phagocytophilum), coinfections, and molecular genetic diversity of B. burgdorferi all were positively correlated with the duration of establishment of tick populations, and therefore generally support the center of origin – pathogen diversity hypothesis. The observed differences across the gradient of establishment, however, were not strong and were nuanced by the high frequency of coinfections in tick populations at both established and recently-invaded tick populations. These results suggest that the invasion of ticks and their associated pathogens likely involve multiple means of pathogen introduction, rather than the conventionally presented scenario whereby infected, invading ticks are solely responsible for introducing pathogens to naïve host populations.  相似文献   

11.
《Ticks and Tick》2020,11(1):101304
Cases of morphological anomalies in the blacklegged tick, Ixodes scapularis (Acari: Ixodidae), have recently been reported from the Northeastern and upper Midwestern United States, potentially complicating identification of this important vector of human disease-causing pathogens. We hereby report a case of a morphological anomaly in I. scapularis, biting a human host residing in Norwich, Connecticut. Using a dichotomous morphological key, high-resolution and scanning electron microscopy images, as well as DNA sequencing, the tick was identified as an adult female I. scapularis with three legs on the left side of the abdomen versus four on the right side, which we believe is the first case of ectromely in an adult I. scapularis. Using diagnostic genes in polymerase chain reaction, the specimen tested positive for Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum, the causative agents for Lyme disease and anaplasmosis, respectively, and also showed evidence of a rickettsial endosymbiont. Here we discuss recent reports of morphological anomalies in I. scapularis, and emphasize the significance of additional studies of teratology in this important tick species and its potential implications.  相似文献   

12.
《Ticks and Tick》2023,14(5):102202
Human Lyme disease–primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America–is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014–2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.  相似文献   

13.
《Ticks and Tick》2023,14(3):102139
Characterizing the diversity of genes associated with virulence and transmission of a pathogen across the pathogen's distribution can inform our understanding of host infection risk. Borrelia burgdorferi is a vector-borne bacterium that causes Lyme disease in humans and is common in the United States. The outer surface protein C (ospC) gene of B. burgdorferi exhibits substantial genetic variation across the pathogen's distribution and plays a critical role in virulence and transmission in vertebrate hosts. In fact, B. burgdorferi infections that disseminate across host tissues in humans are associated with only a subset of ospC alleles. Delaware has a high incidence of Lyme disease, but the diversity of ospC in B. burgdorferi in the state has not been evaluated. We used PCR to amplify ospC in B. burgdorferi-infected blacklegged ticks (Ixodes scapularis) in sites statewide and used short-read sequencing to identify ospC alleles. B. burgdorferi prevalence in blacklegged ticks varied across sites, but not significantly so. We identified 15 previously characterized ospC alleles accounting for nearly all of the expected diversity of alleles across the sites as estimated using the Chao1 index. Nearly 40% of sequenced infections (23/58) had more than one ospC allele present suggesting mixed strain infections and the relative frequencies of alleles in single infections were positively correlated with their relative frequencies in mixed infections. Turnover of ospC alleles was positively related to distance between sites with closer sites having more similar allele compositions than more distant sites. This suggests a degree of B. burgdorferi dispersal limitation or habitat specialization. OspC alleles known to cause disseminated infections in humans were found at the highest frequencies across sites, corresponding to Delaware's high incidence of Lyme disease.  相似文献   

14.
《Ticks and Tick》2023,14(4):102161
The geographic range of the blacklegged tick, Ixodes scapularis, is expanding northward from the United States into southern Canada, and studies suggest that the lone star tick, Amblyomma americanum, will follow suit. These tick species are vectors for many zoonotic pathogens, and their northward range expansion presents a serious threat to public health. Climate change (particularly increasing temperature) has been identified as an important driver permitting northward range expansion of blacklegged ticks, but the impacts of host movement, which is essential to tick dispersal into new climatically suitable regions, have received limited investigation. Here, a mechanistic movement model was applied to landscapes of eastern North America to explore 1) relationships between multiple ecological drivers and the speed of the northward invasion of blacklegged ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu stricto, and 2) its capacity to simulate the northward range expansion of infected blacklegged ticks and uninfected lone star ticks under theoretical scenarios of increasing temperature. Our results suggest that the attraction of migratory birds (long-distance tick dispersal hosts) to resource-rich areas during their spring migration and the mate-finding Allee effect in tick population dynamics are key drivers for the spread of infected blacklegged ticks. The modeled increases in temperature extended the climatically suitable areas of Canada for infected blacklegged ticks and uninfected lone star ticks towards higher latitudes by up to 31% and 1%, respectively, and with an average predicted speed of the range expansion reaching 61 km/year and 23 km/year, respectively. Differences in the projected spatial distribution patterns of these tick species were due to differences in climate envelopes of tick populations, as well as the availability and attractiveness of suitable habitats for migratory birds. Our results indicate that the northward invasion process of lone star ticks is primarily driven by local dispersal of resident terrestrial hosts, whereas that of blacklegged ticks is governed by long-distance migratory bird dispersal. The results also suggest that mechanistic movement models provide a powerful approach for predicting tick-borne disease risk patterns under complex scenarios of climate, socioeconomic and land use/land cover changes.  相似文献   

15.
《Ticks and Tick》2022,13(6):102017
As hematophagous parasites, many tick species are important vectors of medical and veterinary disease agents. Proteins found in tick saliva and midgut have been used with some success in immunizations of animal hosts against feeding ticks, and whole saliva has been used effectively in this capacity against Ixodes scapularis, the primary vector of tickborne pathogens in the United States. Tick saliva is a complex substance containing hundreds of proteins, and the identification of specific protective antigens is ongoing. We performed a series of experiments immunizing guinea pigs with extracts prepared from midgut or attachment cement collected from adult female I. scapularis followed by challenge with nymphs of the same species. Midgut extract did not induce protective immunity, while immunization with cement extract resulted in partial protection of hosts as evidenced by premature tick detachment and 34-41% reduction in tick engorgement weights. Proteomic characterization of I. scapularis cement was performed, demonstrating that the cement extract was compositionally different from tick saliva, and vitellogenin-like lipoproteins were the most abundant proteins in cement extract (>40%). Cement was also heavily enriched with lysozymes and defensins, including those originating from both the mammalian host as well as ticks. These results demonstrate that I. scapularis cement contains immunogenic components capable of stimulating host resistance against tick feeding. Because the cement is present at the tick-host interface for an extended period of time during the feeding process, these antigens present auspicious candidates for further evaluation and potential inclusion in an anti-tick vaccine.  相似文献   

16.
Clinical studies have demonstrated that prophylactic antibiotic treatment of tick bites by Ixodes scapularis in Lyme disease hyperendemic regions in the northeastern United States can be effective in preventing infection with Borrelia burgdorferi sensu stricto, the Lyme disease spirochete. A large clinical trial in Westchester County, NY (USA), demonstrated that treatment of tick bite with 200 mg of oral doxycycline was 87% effective in preventing Lyme disease in tick-bite victims (Nadelman, R.B., Nowakowski, J., Fish, D., Falco, R.C., Freeman, K., McKenna, D., Welch, P., Marcus, R., Agúero-Rosenfeld, M.E., Dennis, D.T., Wormser, G.P., 2001. Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. N. Engl. J. Med. 345, 79–84.). Although this excellent clinical trial provided much needed information, the authors enrolled subjects if the tick bite occurred within 3 days of their clinical visit, but did not analyze the data based on the exact time between tick removal and delivery of prophylaxis. An animal model allows for controlled experiments designed to determine the point in time after tick bite when delivery of oral antibiotics would be too late to prevent infection with B. burgdorferi. Accordingly, we developed a tick-bite prophylaxis model in mice that gave a level of prophylactic protection similar to what had been observed in clinical trials and then varied the time post tick bite of antibiotic delivery. We found that two treatments of doxycycline delivered by oral gavage to mice on the day of removal of a single potentially infectious nymphal I. scapularis protected 74% of test mice compared to controls. When treatment was delayed until 24 h after tick removal, only 47% of mice were protected; prophylactic treatment was totally ineffective when delivered ≥2 days after tick removal. Although the dynamics of antibiotic treatment in mice may differ from humans, and translation of animal studies to patient management must be approached with caution, we believe our results emphasize the point that antibiotic prophylactic treatment of tick bite to prevent Lyme disease is more likely to be efficacious if delivered promptly after potentially infectious ticks are removed from patients. There is only a very narrow window for prophylactic treatment to be effective post tick removal.  相似文献   

17.
In the United States, Lyme disease is caused by Borrelia burgdorferi and transmitted to humans by blacklegged ticks. Patients with an erythema migrans lesion and epidemiologic risk can receive a diagnosis without laboratory testing. For all other patients, laboratory testing is necessary to confirm the diagnosis, but proper interpretation depends on symptoms and timing of illness. The recommended laboratory test in the United States is 2-tiered serologic analysis consisting of an enzyme-linked immunoassay or immunofluorescence assay, followed by reflexive immunoblotting. Sensitivity of 2-tiered testing is low (30%–40%) during early infection while the antibody response is developing (window period). For disseminated Lyme disease, sensitivity is 70%–100%. Specificity is high (>95%) during all stages of disease. Use of other diagnostic tests for Lyme disease is limited. We review the rationale behind current US testing guidelines, appropriate use and interpretation of tests, and recent developments in Lyme disease diagnostics.  相似文献   

18.
《Ticks and Tick》2020,11(1):101310
As tick-borne diseases continue to emerge across the United States, there is need for a better understanding of the tick and pathogen communities in the southern states and of habitat features that influence transmission risk. We surveyed questing and on-host ticks in pine-dominated forests with various fire management regimes in the Sam Houston National Forest, a popular recreation area near Houston, Texas. Four linear transects were established- two with a history of controlled burns, and two unburned. Systematic drag sampling yielded 112 ticks from two species, Ixodes scapularis (n=73) and Amblyomma americanum (n=39), with an additional 106 questing ticks collected opportunistically from drag cloth operators. There was a significant difference in systematically-collected questing tick density between unburned (15 and 18 ticks/1000 m2) and burned (2 and 4 ticks/1000 m2) transects. We captured 106 rodents and found 74 ticks on the rodents, predominantly Dermacentor variabilis. One unburned transect had significantly more ticks per mammal than any of the other three transects. DNA of Rickettsia species was detected in 146/292 on and off-host ticks, including the ‘Rickettsial endosymbiont of I. scapularis’ and Rickettsia amblyommatis, which are of uncertain pathogenicity to humans. Borrelia lonestari was detected in one A. americanum, while Borrelia burgdorferi sensu stricto, the agent of Lyme disease, was not detected in any tick samples. Neither Borrelia nor Rickettsia spp. were detected in any of the mammal ear biopsies (n=64) or blood samples (n=100) tested via PCR. This study documents a high prevalence in ticks of Rickettsia spp. thought to be endosymbionts, a low prevalence of relapsing fever group Borrelia in ticks, and a lack of detection of Lyme disease-group Borrelia in both ticks and mammals in an east Texas forested recreation area. Additionally, we observed low questing tick density in areas with a history of controlled burns. These results expand knowledge of tick-borne disease ecology in east Texas which can aid in directing future investigative, modeling, and management efforts.  相似文献   

19.
We observed an increase in the ratio of pathogenic Babesia microti to B. odocoilei in adult Ixodes scapularis ticks in Maine. Risk for babesiosis was associated with adult tick abundance, Borrelia burgdorferi infection prevalence, and Lyme disease incidence. Our findings may help track risk and increase the focus on blood supply screening.  相似文献   

20.
《Ticks and Tick》2022,13(6):102040
Public health management of Lyme disease (LD) is a dynamic challenge in Canada. Climate warming is driving the northward expansion of suitable habitat for the tick vector, Ixodes scapularis. Information about tick population establishment is used to inform the risk of LD but is challenged by sampling biases from surveillance data. Misclassifying areas as having no established tick population underestimates the LD risk classification.We used a logistic regression model at the municipal level to predict the probability of I. scapularis population establishment based on passive tick surveillance data during the period of 2010-2017 in southern Quebec. We tested for the effect of abiotic and biotic factors hypothesized to influence tick biology and ecology. Additional variables controlled for sampling biases in the passive surveillance data.In our final selected model, tick population establishment was positively associated with annual cumulative degree-days > 0°C, precipitation and deer density, and negatively associated with coniferous and mixed forest types. Sampling biases from passive tick surveillance were controlled for using municipal population size and public health instructions on tick submissions. The model performed well as indicated by an area under the curve (AUC) of 0.92, sensitivity of 86% and specificity of 81%.Our model enables prediction of I. scapularis population establishment in areas which lack data from passive tick surveillance and may improve the sensitivity of LD risk categorization in these areas. A more sensitive system of LD risk classification is important for increasing awareness and use of protective measures employed against ticks, and decreasing the morbidity associated with LD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号