首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure and electronic charge density of the monoclinic phase Di-2-pyrymidonium dichloride-di-iodide compound is studied by using the local density approximation (LDA) and Engel Vosko generalized gradient approximation (EVGGA). Using LDA for exchange correlation potential, we have optimized the atomic positions taken from the X-ray crystallographic data by minimization of the forces acting on the atoms. From the relaxed geometry the electronic structure, electronic charge density and the optical properties were determined. Band structures disclose that this compound has indirect energy band gap. The obtained energy band gap value using EVGGA (2.010 eV) is larger than that obtained within LDA (1.781 eV). To envision the chemical bonding nature between the composition of the investigated compound, the distribution of charge density was discussed in the (−1 0 1) crystallographic plane. The contour plot shows partial ionic and strong covalent bonding between C–O, N–C and C–H atoms. The optical properties of Di-2-pyrymidonium dichloride-di-iodide are obtained by the calculation of the dielectric function.  相似文献   

2.
Structural, elastic, electronic and thermodynamic properties of the ternary cubic filled skutterudite CeOs4Sb12 compound were calculated using the full-potential linear muffin-tin orbital implementation of density functional theory. The exchange-correlation potential was treated with the local density approximation. The calculated ground state quantities such as the lattice parameter, atomic position parameters of Sb atoms, bulk modulus and its pressure derivative are compared to the available experimental data. We have computed the elastic moduli and their pressure dependence, which have not been calculated or measured yet. The Debye temperature is estimated from the average sound velocity. From the elastic parameter behavior, it is inferred that this compound is elastically stable and brittle in nature. The electronic band structure calculations revealed metallic behavior for the herein studied compound at zero pressure, but under pressure effect, the metallic character disappears and the compound becomes a narrow indirect band gap semiconductor. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P and temperature T on the lattice constant, bulk modulus, heat capacity, thermal expansion coefficient and Debye temperature are investigated.  相似文献   

3.
采用密度泛函理论(DFT)框架下的局域密度近似(LDA),计算了四方HfO2晶体的电子结构,包括能带结构和态密度.在此基础上计算了四方Hf02晶体的光学线性响应函数,包括复介电函数、吸收光谱、复折射率和光电导谱.通过比较发现,计算结果与实验结果吻合较好,说明采用密度泛函理论的局域密度近似来计算HfO2材料的光学性质是比较可靠的.  相似文献   

4.
Novel Cu2O/Pt/TiO2 three-layered nanocomposite films were prepared by deposition on glass substrates using the magnetron sputtering method. Their structure, surface morphology as well as optical and photocatalytic properties were examined by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–visible spectroscopy, and photoluminescence spectroscopy. As a comparison, Cu2O/TiO2 double-layer films were also investigated. The results show that Cu2O/TiO2 double-layer films have relatively smooth surfaces with agglomerated Cu2O particle, whereas the surface layer of the Cu2O/Pt/TiO2 three-layered nanocomposite films was composed of fine nano-sized columnar Cu2O and they had a rough surface morphology due to the insertion of the Pt layer. The photocatalytic activity of the three-layered films is significantly higher than that of the Cu2O/TiO2 double-layered composite films. Such enhancement is closely related to the presence of the Pt layer and the rough surface, which was composed of fine nano-sized Cu2O columns; this increases the utilization of visible light as well as promotes the transfer of interfacial charge and the separation of photogenerated electron–holes.  相似文献   

5.
6.
A detailed theoretical study of the electronic structure, optical, elastic and thermodynamics properties of jadeite have been performed by means of the first principles based on the state-of-the-art of density functional theory within the generalized gradient approximation. The optimized lattice constants and the atomic positions are in good agreement with experimental data. The total density of states and partial density of states of jadeite have been discussed. The energy gap has been calculated along the Γ direction found to be 5.338 eV, which shows that jadeite has wide direct band gap. The optical properties, such as the dielectric function, refractive index, extinction coefficient, reflectivity coefficient, loss function and absorption coefficient for [100] and [001] directions have been described for the first time in the energy range 0–40 eV. The elastic constants, bulk modulus, Young׳s modulus, anisotropic factor and Poisson׳s ratio have been calculated. Furthermore, the Vickers hardness and Debye temperature of jadeite have been predicted. The calculated values of all above parameters are compared with the available experimental values.  相似文献   

7.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   

8.
9.
A first-principles approach is used to study the structural, electronic, optic and magnetic properties of Ba2GdSbO6, using full-potential linearized augmented plane wave (FP-LAPW) scheme within GGA+U approach. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. The calculated band structure and density of states show that the material under load has an indirect energy band gap LX for majority-spin direction and ГX for the minority spin channel. The analysis charge densities show that bonding character as a mixture of covalent and ionic nature. The optical properties are analyzed and the origin of some peaks in the spectra is described. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 14 eV have also been reported.  相似文献   

10.
The structural, elastic, and thermodynamic properties of ZnGeP2 with chalcopyrite structure are investigated using the pseudo-potentials plane wave method based on the density functional theory with the generalized gradient approximation. The lattice parameters (a, c and u) are directly calculated and agree well with previous experimental and theoretical results. The obtained negative formation enthalpy shows that ZnGeP2 crystal has strong structural stability. We have also calculated the bulk modulus B and the elastic parameters (C11, C12, C13, C33, C44, and C66) which have not been measured yet. The accuracy and reliability of the calculated elastic constants of ZnGeP2 crystal are discussed. In addition, the pressure and temperature dependencies of the lattice parameters, bulk modulus, Debye temperature, Grüneisen parameter, entropy, volume thermal expansion coefficient, and specific heat capacity are obtained in the ranges of 0–20 GPa and 0–1200 K using the quasi-harmonic Debye model. To our knowledge this is the first quantitative theoretical prediction of the thermodynamic properties for ZnGeP2 compound and still awaits experimental confirmations.  相似文献   

11.
In this work, we study the structural, electronic and optical properties of AgSbS2, using full-potential linearized augmented plane wave and the pseudopotential plane wave scheme in the frame of generalized gradient approximation. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Our results suggest a phase transition from AF-IIb phase to rocksalt (B1) phase under high pressure. The calculated band structure and density of states show that the material under load has an indirect energy band gap X→() for AF-IIb phase (semiconductor) and a negative band gap W(ГX) for B1 phase (semimetal). The optical properties are analyzed and the origin of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 14 eV have also been reported and discussed.  相似文献   

12.
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti–O and Ti–O–Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 °C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region.  相似文献   

13.
14.
We calculate defect levels of dangling bonds in germanium using hybrid density functionals. To validate our approach, we first consider the dangling bond in silicon finding two well-separated defect levels, in excellent correspondence with their experimental location. Application of our scheme to the dangling bond in germanium then yields two very close defect levels lying just above the valence band, consistent with the location of the experimentally determined charge neutrality level. The small correlation energy and the proximity to the valence band edge provide an explanation for the absence of clear defect signatures in electrical and electron spin resonance experiments.  相似文献   

15.
Structural and mechanical properties in rutile (tetragonal) phases of SnO2 and TiO2 are investigated by performing first-principle density functional theory (DFT) calculations. Generalized Gradient Approximation (GGA) potentials of electronic exchange and correlation part parameterized by Perdew–Burke–Ernzerhof (PBE) are used. Second order elastic stiffness constants, bulk modulus, first-derivative of bulk modulus, and pressure behavior of these mechanical properties are studied up to pressure of 10 GPa. Structural properties and elastic constants of SnO2 and TiO2 calculated in this study are compatible with experimental and other available theoretical studies. Electronic band gap energies of these semiconductors are also calculated. As expected, the calculated values by standard DFT calculations are underestimated in comparison to experimental values.  相似文献   

16.
The doped cerium dioxide (CeO2) nanomaterials have attracted intensive attention due to its enhanced photocatalytic activity in the visible light region, but still lacking is the theoretical understanding on the mechanism of this behavior. Herein, the origin of enhanced photocatalytic performance of doped CeO2 is systematically explored by using the first-principles calculation. The systematic study includes the effects of nonmetal C+N codoping on the electronic structure and optical proprties of CeO2 in comparison to the effect of individual dopants. The monodoping (B, C) introduces impurity states in the middle of gap. For the N–CeO2, the impurity levels are near the top of valence band at lower N concentration, while those are separated by more than 1.0 eV in the gap at higher N concentration. Interestingly, C+N codoping shifts up the Fermi level to the bottom of conduction band, and introduces impurity level close to the Fermi level. Moreover, the feasibility of the introduction of N into the CeO2 crystal structure is found to be enhanced in the presence of C. The reduced band gap and strong absorption induced by impurity levels are responsible for the enhanced photocatalytic activity of doped CeO2 in the visible region. These findings can rationalize the available experimental results and pave the way for developing CeO2-based photocatalysts.  相似文献   

17.
N. Bouarissa   《Solid-state electronics》2000,44(12):2193-2198
Based on the empirical pseudo-potential method, the electronic and optical properties of the InP compound in the zinc-blende structure at ambient and under hydrostatic pressure are reported. The first-order pressure coefficients of the main band gaps (at Γ, X, and L) are given. The agreement between our calculated hydrostatic deformation potential and the available experimental data is better than 5%, whereas for the crossover pressure from direct to indirect band gap is about 10% less. The valence bandwidth increases with increasing pressure reflecting the decreased ionicity in the material of interest. Besides the electronic properties, the effect of pressure on the dielectric function is also analysed.  相似文献   

18.
采用HSE杂化势计算了Cd1-xZnxTe合金的性质,并获得了较传统GGA更为准确的光学带隙和形成焓.在构建超胞计算合金体系时,采用SQS模型.计算分析得出Cd1-xZnxTe合金的光学带隙下凹参数为0.266 eV,这与已报道实验结果0.254 eV非常吻合.同时,计算得出的形成焓较高,特别是在Cd0.5 Zn0.5 Te合金组分时(25.60 meV/atom).对合金中键长的分析后得出Cd-Te键和Zn-Te键的局域键长与CdTe和ZnTe体材料的值非常接近,但二者之间相差较大,从而导致合金材料中各个原子存在较大的弛豫,这也是该合金具有较大形成焓的主要原因.  相似文献   

19.
In this work, pure and Ga-doped In2O3 nanostructures have been synthesized by facile template-free hydrothermal method. The structural, morphological and optical properties are characterized by using XRD, FT-IR, HR-SEM and TEM, EDS, XPS, UV-DRS, and PL techniques. X-ray diffraction analysis indicates a pure cubic phase while crystallite size decreases with Ga doping. HR-SEM and TEM observations reveal irregular-shaped and spindle-like nanostructures with enhanced crystallinity and reduction in particle size with Ga doping. XPS spectra reveal the oxidation state of Ga is +3. The energy band gap estimated by UV–vis DRS spectroscopy is found to increase slightly from 3.40 to 3.45 eV with Ga doping. Photoluminescence spectra display violet, blue and green emission peaks are observed during Ga doping concentrations. Photodegradation of Methylene blue dye under ultra violet light radiation is found to double with Ga doping; i.e. 48% for Ga- In2O3 compared to 22% for pure In2O3.  相似文献   

20.
Using the first-principles plane-wave pseudo-potential method based on density function theory (DFT), the electronic structure and optical properties of Ga0.5Al0.5As (001), (011) and (111) surfaces are calculated. Result shows that (001) surface is reconstructed, (011) surface is not reconstructed but wrinkled, (111) surface is only relaxed. (111) is the most stable surface. (001) surface owns the lowest work function. Absorption coefficient and reflectivity of these surfaces are smaller than bulk, the transmittance of the surfaces are larger than the bulk, which is helpful for the incident light to excite photoelectrons. The decrease of the absorption coefficient and reflectivity at (001) surface are the largest. Calculation of electronic structure and optical properties predict that the (001) surface should have the strongest photoemission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号