首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
本研究通过硫酸水解、超声和TEMPO (2,2,6,6-四甲基哌啶氧化物)氧化3种处理方法分别制备了纳米纤维素(CFR-CNC、CFR-CNF和CFR-TNC)及相应薄膜,对纳米纤维素微观形态、结晶度、热稳定性和化学结构进行了表征,同时比较了纳米纤维素薄膜的形态和机械性能。结果表明,3种纳米纤维素具有不同的长宽比(29.2、163.7、132.2)和结晶度(62.5%、52.8%、43.9%)。红外光谱图表明,3种纳米纤维素的纤维素分子结构并未改变,且CFR-TNC成功引入羧基。3种纳米纤维素薄膜中,CFR-CNF薄膜具有较高的拉伸强度(36.6 MPa),CFR-CNC薄膜具有较好的抗形变能力,并且3种薄膜均具有良好的透光性。  相似文献   

2.
以玉米秸秆为原料,采用溶媒法制备羧甲基纤维素,在单因素实验的基础上,利用响应面法对羧甲基纤维素的制备工艺进行优化。最佳工艺条件为:氯乙酸添加量为2.67g、反应时间1.5h、反应温度63℃,此条件下制备的羧甲基纤维素取代度为1.071。使用扫描电镜、傅里叶变换红外光谱仪、X-射线衍射仪、热重分析仪对玉米秸秆粉、玉米秸秆纤维素及羧甲基纤维素的形貌及结构进行了表征:提取的纤维素的结构没有遭到破坏,结晶度提高。制备的羧甲基纤维素因羧甲基基团的引入,导致表面疏松,热分解温度降低。  相似文献   

3.
玉米秸秆纳米纤维素制备的工艺优化   总被引:1,自引:0,他引:1       下载免费PDF全文
该研究采用弹射式蒸汽闪爆法(High density steam flash-explosion,HDSF)制备玉米秸秆纳米纤维素纤维,研究蒸汽闪爆压力、蒸汽闪爆时间、Na OH浓度对玉米秸秆中的半纤维素、纤维素、木质素含量的影响。以单因素试验为基础,根据中心组合实验设计原理,将纳米纤维素含量作为响应值,通过响应面分析法进行试验设计与数据分析。试验发现:弹射式蒸汽闪爆法制备纳米纤维素的工艺参数为:蒸汽闪爆压力值为1.5 MPa,蒸汽闪爆时间为285 s,氢氧化钠浓度为0.4 mol/L,纳米纤维素含量预测值46.02%,实验验证值为45.88%,与预测值接近,说明预测模型可靠性较高,此时半纤维素含量13.50%,木质素含量11.78%,证明方法合理可行。影响纳米纤维素得率的因素依次为蒸汽闪爆压力值>蒸汽闪爆时间>氢氧化钠浓度。弹射式蒸汽闪爆法有利于分离相互缠绕的半纤维素、纤维素、木质素,具有效率高、成本低、绿色无污染等优点。并且运用此方法制备的纳米纤维素具有较小粒径和良好的水溶性,这使得玉米秸秆纳米纤维素拥有更好的应用前景。  相似文献   

4.
本研究利用玉米秸秆纳米纤维素、玉米秸秆淀粉等作为成膜基材,通过共混流延法制备玉米秸秆纳米纤维素-淀粉膜。通过单因素实验和正交试验,对制备的纳米纤维素-淀粉膜的性能进行测定,考察各成膜基材对纳米纤维素-淀粉膜的机械性能、透湿系数、透光率、水溶性和透氧系数的影响,最终确定成膜液最佳配方组合:淀粉10.0%(W/V)、纳米纤维素5.0%(W/V)、羧甲基纤维素钠1.6%(W/V)、甘油2.3%(V/V)。在最优工艺条件下制备的纳米纤维素-淀粉膜综合效果最佳,并测得性能指标,膜厚(0.063±0.050)mm,抗拉强度14.92 MPa,断裂伸长率64.75%,透湿系数为2.19×10?12 g·m/m2·s·Pa,透光率87.60%,溶解时间97.00 s,透氧系数2.75×10?14 cm3·cm/cm2·s·Pa。  相似文献   

5.
该研究以微晶纤维素(microcrystalline cellulose,MCC)为原料,采用超声辅助柠檬酸酸解法制备含有羧基的纤维素纳米晶(cellulose nanocrystals,CNCs),并利用单因素试验和响应面试验优化其制备工艺。对制备得到的CNCs进行性能表征。结果表明,响应面优化得到最佳酸解条件为液料比51∶1(mL/g),反应时间3.75 h,反应温度80℃,在此条件下CNCs的羧基含量预测值为1.19 mmol/g。最佳酸解条件经过3次验证试验,所得CNCs的羧基含量实测平均值为1.18 mmol/g,实测值与预测值接近。结果分析表明该条件下制备的CNCs在1 735 cm-1处出现C=O基团,表明柠檬酸成功接枝在MCC表面;CNCs属于纤维素I型,其结晶度(74.06%)远高于MCC(69.07%);CNCs呈短棒状,直径约为10 nm~30 nm,长度约为80 nm~200 nm,平均粒度和Zeta电位分别为358 nm和-39.8 m V;柠檬酸上的羧基与MCC的C6原子上的羟基发生了酯化反应。该研究结果可为羧基化CNCs的制备提供一种...  相似文献   

6.
7.
玉米秸秆皮、髓纤维素提取及表征   总被引:1,自引:0,他引:1       下载免费PDF全文
以玉米秸秆为原料,研究玉米秸秆皮、髓纤维素的性质。玉米秸秆皮、髓分别用苯-醇抽提后,进一步用亚氯酸钠在酸性环境下脱除木质素,最后用氢氧化钾脱除多戊糖,得到玉米秸秆皮、髓纯化纤维素。结果表明,秸秆皮中纤维束排列更整齐紧密,秸秆皮和髓化学组分相似。从秸秆皮、髓得到的纯化纤维素得率分别为38.9%和38.2%,其中α-纤维素含量为87.5%和82.4%,绝大多数多戊糖和木质素被脱除。秸秆皮、髓纯化纤维素的晶型结构仍为纤维素I型,结晶度由纯化前的51.2%和30.4%提高到67.7%和42.1%;纯化纤维素的起始分解温度和最高分解温度相对于秸秆皮、髓均提高,热稳定性优于玉米秸秆皮、髓。  相似文献   

8.
花生壳纳米纤维素的制备与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以花生壳为原料,在氢氧化钠碱解和亚氯酸钠漂白预处理基础上,通过硫酸水解方法制备花生壳纳米纤维素。采用扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对花生壳纳米纤维素的表征进行研究。结果表明,通过碱解和漂白处理,花生壳半纤维素和木质素被大量去除,花生壳纤维素含量由43.84%增加到86.56%,纤维素直径为10~30μm;花生壳纳米纤维素呈棒状结构,长度为90~210nm,直径为5~25nm;花生壳纳米纤维素制备过程中纤维素结构并未遭到破坏;结晶度随制备过程逐渐增高,花生壳纳米纤维素结晶度为74.71%,呈典型的纤维素I型晶型;花生壳纳米纤维素的起始热分解温度较低,当温度达到500℃时,花生壳纳米纤维素的残余率大于30%。所制备的花生壳纳米纤维素有望在可降解复合材料中得到应用。  相似文献   

9.
以玉米秸秆为原料,研究其提取制备微晶纤维素的工艺及产品性能。探讨酸解温度、硫酸体积分数、酸解时间对微晶纤维素聚合度及得率的影响,并对微晶纤维素的理化性质进行了分析。结果表明:玉米秸秆微晶纤维素最佳制备工艺条件为:反应温度85℃,硫酸体积分数8%,水解时间90 min,此时制得微晶纤维素聚合度为292,纯度92.6%,得率76.48%,结晶度为74.5%。在此条件下,玉米秸秆微晶纤维素在保留形态结构的同时具有较高的结晶度和热稳定性,具备较好的应用性能和价值。  相似文献   

10.
玉米磷酸酯淀粉秸秆纤维素可食膜的制备及物理性能   总被引:1,自引:0,他引:1  
以玉米磷酸酯淀粉(corn distarch phosphate,CDP)和玉米秸秆纤维素(corn straw cellulose,CSC)为主要基材制备可食膜。研究CDP与CSC质量比、羧甲基纤维素(carboxymethyl cellulose,CMC)质量浓度、丙三醇(glycerol,Gly)质量浓度对可食膜物理性能抗拉强度(tensile strength,TS)、断裂伸长率(elongation at break,EAB)、水蒸气透过系数(water vapour permeability,WVP)和透光率的影响。在此基础上以可食膜的物理性能综合分为响应值,采用响应面法优化制备工艺参数。结果表明:最佳工艺条件为CDP-CSC质量比8.5∶1.5、CMC质量浓度0.8 g/100 mL、Gly质量浓度1.0 g/100 mL,此条件下可食膜物理性能综合分最高为0.683,对应可食膜的TS为19.75 MPa、EAB为46.89%、WVP为1.167×10-12 g/(cm•s•Pa)、透光率为41.86%,比未添加CSC的CDP膜物理性能综合分提高27.14%。通过扫描电子显微镜、X射线衍射和傅里叶变换红外光谱分析对可食膜进行结构观察和表征,表明CDP/CSC可食膜表面较平整,结构致密,各基质相容性好。  相似文献   

11.
以小麦秸秆纤维素为原料,通过硫酸水解辅助高压均质的方法,分层制备小麦秸秆纳米纤维素(CNC);分别采用马尔文纳米粒度分析仪、透射电子显微镜、原子力显微镜、傅里叶变换红外光谱仪、X射线衍射仪和热重分析仪对分层制备的小麦秸秆CNC进行表征分析。结果表明,经硫酸水解预处理、离心收集得到的上层清液纳米纤维素(CNC-SL)为纳米纤维素晶须,与原料相比,其结晶度由48.61%提高至71.87%;硫酸水解预处理、离心收集的残余纤维固体(CNC-S)经8次均质处理制备的纳米纤维素(CNCSP),其粒径分布在100~200 nm,直径约为15 nm,为高结晶度的短棒状纳米纤维素晶须,晶型为Iβ型。与原料相比,CNC-SL和CNCSP的热稳定性均下降。与硫酸水解法制备CNC相比,硫酸水解辅助高压均质法制备的CNC得率较高;与机械均质化方法相比,此方法所需均质次数明显减少。  相似文献   

12.
以茶梗为原料,采用硫酸水解法制备纤维素纳米晶体(CNC),并运用响应面分析法对CNC制备工艺(即硫酸质量分数、反应温度和反应时间)进行优化;采用透射电子显微镜(TEM)、热重分析仪(TG)和X射线衍射仪(XRD)对CNC的形貌、热力学性能、结晶结构和结晶性能进行表征。结果表明,制备茶梗CNC的最佳反应时间125 min,温度45℃,硫酸质量分数为63%;在最佳工艺条件下获得的CNC的得率为49.9%,其为棒状,直径4~8 nm,长度100~250 nm,属纤维素I型;与茶梗纤维相比,茶梗CNC结晶度提高,热稳定性降低。  相似文献   

13.
采用一种操作简单、绿色环保的以对甲苯磺酸为催化剂对竹纤维进行水热处理制备纳米纤维素(NCC)的方法.考察了反应时间、反应温度和超声作用对纳米纤维素得率和性能的影响.结果 表明,在反应温度110℃、反应时间45 min、超声时间120 min的条件下,纳米纤维素得率最高.  相似文献   

14.
玉米秸秆生产燃料乙醇技术   总被引:9,自引:0,他引:9  
张迪  丁长河  李里特  洪丰 《酿酒》2006,33(5):56-58
玉米秸秆经预处理后可得到纤维素和半纤维素,用酸或酶将其水解成单糖,再进行发酵就可以生产燃料乙醇。对玉米秸秆生产燃料乙醇的原料预处理、水解产生可发酵单糖和乙醇发酵等技术方法进行了综述。  相似文献   

15.
以稻草为原料制备稻草乙醇浆,再采用酸水解-超声法制备稻草乙醇浆纳米纤维素,对稻草乙醇浆纳米纤维素性状进行分析。结果表明,稻草经乙醇-水溶液蒸煮及OPDEP漂白后,漂白浆在硫酸质量分数54%、液比1︰16、60℃下水解60 min以及在硫酸质量分数56%、液比1︰18、60℃下水解60 min,然后经800 W超声处理20 min,分别制得最高得率和最高结晶度的稻草乙醇浆纳米纤维素;经X射线衍射(XRD)分析,发现稻草乙醇浆纳米纤维素是典型的纤维素Ⅰ型结晶结构;扫描电子显微镜(SEM)观察其宽度约为10~30 nm,长度100~500 nm;粒径分析发现其90%以上的粒径基本分布在20~50 nm;热稳定性分析发现,样品的热降解过程为180~240℃、240~320℃、320~480℃三个主要阶段。  相似文献   

16.
杜海顺  李滨 《中国造纸》2021,40(11):68-78
纳米纤维素是一种绿色可再生的生物基纳米材料,由于其特殊的物化性质备受学术界和工业界的广泛关注。清洁高效的纳米纤维素制备方法的建立对实现其规模化生产和商业化应用尤为重要。本文主要综述了甲酸水解法清洁制备纳米纤维素的研究进展。与传统的无机强酸水解法相比,甲酸水解法制备纳米纤维素的主要优点包括:甲酸易回收和回用,可确保整个制备过程的清洁;甲酸在水解纤维素的同时,也与纤维素表面羟基发生反应,从而在纤维素表面引入酯基,同步实现纳米纤维素的制备与表面改性;通过反应条件的控制,可实现纳米纤维素形貌和性质的可控制备。此外,本文还概括介绍了甲酸水解法制备的纳米纤维素的功能性应用和展望。由于其特殊的表面性质,甲酸水解法制备的纳米纤维素在构建异质膜器件、Pickering乳液,以及橡胶和塑料复合材料加填等领域具有广阔的应用前景。  相似文献   

17.
纳米纤维素的制备及应用   总被引:3,自引:3,他引:3       下载免费PDF全文
介绍了机械法制备微纤化纤维素(MFC)和化学法、生物法制备纳米微晶纤维素(NCC)及纳米纤维素在制浆造纸领域的潜在应用,并对纳米纤维素未来研究重点进行了总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号