首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
利用氧化锌溶胶-凝胶(Sol-Gel)、锌盐乙醇溶液(ES)和氧化锌纳米粒子溶液(NP)三种不同的籽晶层前驱液,在ITO衬底上通过化学浴沉积方法(CBD)制备出了一维氧化锌纳米棒阵列薄膜,并在所制备的氧化锌纳米棒阵列薄膜上构筑了具有“三维”异质结结构的PbS量子点太阳能电池.通过扫描电镜(SEM)、X射线衍射(XRD)和透射光谱分析等研究了籽晶层对氧化锌纳米棒阵列薄膜形貌、结构和光学性质的影响;结合电池性能测试结果,比较分析了“三维”异质结结构和“平面”异质结结构对电池性能的影响.结果表明:在ES籽晶层上生长的氧化锌纳米棒阵列薄膜的取向性最好,Sol-Gel次之,NP最差;在ES和Sol-Gel籽晶层上生长2h的样品透射率在80;左右;与“平面”异质结结构PbS量子点电池相比,基于氧化锌纳米棒阵列薄膜制备的“三维”异质结结构电池的短路电流可提高40;,表明“三维”异质结结构有利于载流子的分离和输运.  相似文献   

2.
采用两步法在二氧化锡掺氟(SnO2:F,FTO)导电玻璃基板上制备出钇(Y)掺杂多孔结构氧化锌(ZnO)纳米棒,首先利用浸渍-提拉法在FTO导电玻璃基板上制备ZnO晶种层,然后利用水热法在ZnO晶种层上生长Y掺杂ZnO纳米棒.研究了不同浓度Y掺杂ZnO纳米棒的晶相结构、微观形貌、化学组成及光学性能.实验结果表明:所制备的Y掺杂ZnO纳米棒为沿c轴择优取向生长的六方纤锌矿结构,随着Y掺杂浓度的增加,ZnO纳米棒(002)衍射峰强度先增大后减小,纳米棒的平均长度由1.3μm增加到2.6μm.ZnO纳米棒的形貌由锥状结构向柱状结构演化,纳米棒侧面的孔洞分布密度增加.所制备的Y掺杂ZnO纳米棒具有一个较弱的紫外发光峰和一个较强的宽可见发光峰.所制备样品的光学带隙随着Y掺杂浓度的增加而减小,其光学带隙在3.29~3.21 eV之间变化.利用Y掺杂ZnO纳米棒作为量子点敏化太阳能电池的光阳极可极大提高太阳电池的光电转换效率.  相似文献   

3.
夏冬林  郭锦华 《人工晶体学报》2020,49(12):2274-2281
采用两步法在导电玻璃(FTO)基板上制备纯氧化锌(ZnO)纳米棒和钇掺杂的氧化锌(ZnO∶Y)纳米棒,采用连续离子层吸附反应法(SILAR)在所制备的ZnO及ZnO∶Y纳米棒上沉积CuInS2量子点制备ZnO/CuInS2和ZnO∶Y/CuInS2光阳极。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针能谱仪(EDS)、紫外-可见分光光度计(UV-Vis)、电流密度-电压(J-V)曲线等技术手段对不同光阳极样品的晶相结构、微观形貌、化学组成、光吸收性能和太阳电池性能进行了表征。实验结果表明:所制备的ZnO纳米棒和ZnO∶Y纳米棒为六方纤锌矿结构。CuInS2量子点敏化的ZnO纳米棒薄膜的光学带隙从3.22 eV减小为2.98 eV。CuInS2量子点敏化ZnO∶Y太阳能电池的短路电流密度和光电转换效率比未掺杂的ZnO纳米棒组装的太阳能电池分别提高了6.5%和50.4%。  相似文献   

4.
采用溶剂热法以醋酸锌和硫化钠反应成功制备了具有双螺旋结构的一维ZnS纳米棒,利用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、X射线能量色散分析谱仪(XEDS)、紫外吸收光谱(UV-vis)和光致发光谱(PL)等测试手段对样品的化学成分、形貌、晶体结构和光学性质等进行了表征分析.实验结果表明样品为一维六方纳米晶结构,沿着[001]方向生长,并具有双螺旋结构,长度分布在100~200 nm范围,直径约为5 ~15 nm,螺距约为20 nm.双螺旋ZnS纳米结构的吸收峰与块体材料相比发生了蓝移.  相似文献   

5.
可控形貌纳米氧化锌的制备及光学性能研究   总被引:1,自引:0,他引:1  
以氯化锌为原料,以不同有机胺(乙胺、二乙胺、三乙胺、乙二胺)作为碱源,在160℃下合成出了不同形貌的纳米氧化锌.采用XRD、SEN、IR等对产物的结构和形貌进行了表征,研究了不同有机胺对纳米氧化锌形貌及发光性能的影响.结果表明:所制备的试样均为结晶良好的六方纤锌矿结构.乙胺和乙二胺在浓度为0.3 mol/L时,制备的氧化锌为棒状;二乙胺和三乙胺的浓度为0.3 mol/L时,制备的氧化锌为颗粒状.纳米氧化锌在424 nm和474 nm波长处呈现出蓝光发光峰,在525 nm波长处呈现出绿光发光峰.且在纳米尺度附近棒状氧化锌的发光强度要强于颗粒状的,当氧化锌的长度增加到微米范围时,发光强度反而降低.  相似文献   

6.
溶剂热合成氮化硼纳米晶过程中氮源种类的影响   总被引:2,自引:1,他引:1  
以NaNH2和BC l3为原料,利用溶剂热方法合成了六方氮化硼纳米微晶,并用红外吸收光谱(FTIR)、X射线粉末衍射(XRD)方法分析了微粒的结构,利用透射电子显微镜(TEM)观测了BN微粒的粒度和微观形貌。与早期用L i3N为氮源合成的氮化硼(产物中具有较多纳米棒)相比,本文中制备的氮化硼纳米晶主要呈球形,颗粒粒度明显增大,而且产率有较大幅度的提高。  相似文献   

7.
不同形貌的纳米氧化锌粉的光学性能研究   总被引:1,自引:0,他引:1  
本文采用水热和溶剂热法制备了粒状、棒状、片状、管状纳米氧化锌粉体,并对四种不同形貌的氧化锌粉的光学性能进行了对比研究.结果表明:氧化锌纳米粒,纳米片和纳米管在200~400 nm区域的反射率均低于8;,而氧化锌纳米棒在200~400 nm区域的反射率大约为18;.氧化锌纳米管对甲基橙的光催化降解效果最好,在距离30 cm 的30 W紫外灯条件下进行照射,8 h完全降解,而氧化锌纳米棒对甲基橙的光催化降解效果最差,在相同的实验条件下,氧化锌纳米棒的降解率仅为70;.  相似文献   

8.
采用化学水浴沉积法,在预制晶种层的基底上得到垂直底面生长的有序ZnO纳米棒阵列,再用反应磁控溅射方法,沉积制备ZnO-TiO2复合结构的纳米棒阵列.利用X射线衍射(XRD)和扫描电子显微镜(SEM)对制备得到的样品进行结构和形貌表征,研究了晶种层、水浴生长液浓度和磁控溅射氧氩比对复合纳米阵列的影响.制备得到了具有TiO2分枝的复合纳米棒阵列,并初步探讨了TiO2分枝的形成机理,为制备基于复合纳米棒阵列的器件提供了条件.  相似文献   

9.
片状纳米氧化锌单晶的制备和表征   总被引:6,自引:0,他引:6  
本文提供了一种应用二步法制备片状纳米氧化锌单晶的实验方法--首先,以尿素为沉淀剂宿主,以氯化锌、碱式碳酸锌为原料,应用均匀沉淀法获得纳米氧化锌的片状纳米级前驱物;然后通过控温热分解前驱物制备出片状纳米氧化锌单晶.用扫描电镜观测了制备的ZnO单晶的形貌,并通过红外光谱对其进行了表征;讨论了溶液中生成纳米氧化锌的前驱物的热力学趋势,并对氧化锌制备过程进行了结晶动力学分析.结果表明:实验制备的氧化锌均为无色透明的片状单晶,结晶形貌为正六边形、五边形、矩形以及其它不规则形状,单晶直径在3~30μm之间,厚30~60nm;影响纳米氧化锌单晶制备的主要因素是反应物料配比、沉淀剂宿主尿素的浓度(1∶6)以及反应温度(70~85℃).此外,乙醇的含量对片状纳米ZnO前驱物的形貌影响很大,过高(>40;)或过低(<10;)的乙醇含量都不利于形成片状纳米氧化锌单晶的前驱物.  相似文献   

10.
采用溶剂热法制备了长径比可控的纤锌矿CdS纳米棒;以3CdSO4·8H2O、CH4 N2S为原料在180℃、24 h溶剂热反应条件下,通过改变Cd/S物质的量比和保温时间等因素来调节CdS纳米棒的长径比.利用扫描电镜(SEM)、X射线衍射(XRD)、紫外可见吸收光谱(UV-Vis)、光催化分别对其形貌、结构和光催化性能进行了表征和分析.结果表明:Cd/S摩尔比对CdS棒的生长起到关键作用,随着镉硫比的减小,CdS纳米棒的长径比逐渐增大.当Cd/S摩尔比为1∶6时,制备的CdS为长径比较大且表面光滑的纳米棒,纳米棒的尺寸大约为长800 nm、直径70nm.通过降解亚甲基蓝溶液测试了CdS纳米材料的可见光照射下的光催化性能,结果表明具有大长径比的CdS纳米棒表现出优异的光催化活性.  相似文献   

11.
利用低温水热法在p-GaN薄膜上生长了铟(In)和镓(Ga)共掺杂的ZnO纳米棒。X射线衍射(XRD)、X射线光电子能谱(XPS)和X射线能量色谱仪(EDS)结果表明,In和Ga已固溶到ZnO晶格中。扫描电子显微镜(SEM)结果表明, ZnO纳米棒具有良好的c轴取向性,随着In和Ga共掺杂浓度的增加,纳米棒的直径减小,密度增加。XRD结果表明,In和Ga共掺杂引起ZnO晶格常数增大,导致(002)衍射峰向低角度方向偏移。同时,ZnO的光学性质受到In和Ga共掺杂的影响。与纯ZnO相比, 共掺杂ZnO纳米棒的紫外发射峰都出现轻微红移,这是表面共振和带隙重整效应综合作用的结果。I-V特性曲线表明,随着In和Ga共掺杂浓度的增加,n-ZnO纳米棒/p-GaN异质结具有更好的导电性。  相似文献   

12.
以硝酸锌Zn(NO3)2·6H2O和六次甲基四胺(HMT)为原料,通过水热法制备出氧化锌纳米棒,研究了反应时间和冷却时间对产物形貌和尺寸的影响.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、光致发光谱(PL)、紫外-可见光谱、红外光谱(FT-IR)表征产物的结构和性能.结果表明,反应时间为6 h和急速冷却至室温条件下合成样品为六方纤锌矿氧化锌纳米棒,平均直径为300 nm;样品具有良好的结晶质量和发光性能,样品在200~400nm有较强的紫外吸收性能;FT-IR图谱表明产物在430 cm-1左右出现了Zn-O特征吸收峰,并有所红移;样品的开启场强为2.2 V/μm,场增强因子为2550,当场强为4.75 V/μm时,电流密度可以达到0.7 mA/cm2,是一种性能优良的冷阴极电子发射源.  相似文献   

13.
采用湿化学法在Si衬底上生长了纳米棒结构的Co掺杂ZnO薄膜,并研究了掺杂浓度对生成样品结构和性能的影响.研究表明这种湿化学法成本低廉、收益高、重复性良好.样品的XRD结果表明掺杂的ZnO没有出现杂相.SEM结果表明掺杂样品是由ZnO纳米棒团簇结构组成,且团簇的密度随着Co掺杂浓度的增大而增大.薄膜的光致发光光谱结果表明Co掺杂导致薄膜的带隙发生红移,同时也证明了Co原子有效地进入了ZnO晶格.  相似文献   

14.
Improving the property of ZnO nanorods using hydrogen peroxide solution   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) nanorod arrays made by the hydrothermal method were treated with hydrogen peroxide (H2O2) solution through two different approaches. One is to immerse ZnO nanorod sample into H2O2 solution. The other is a pre-treatment of spin-coating H2O2 solution on the seed layer before the growth of the ZnO nanorods. In the first approach, we found that the ultraviolet (UV) emission peak of the ZnO nanorod photoluminescence (PL) spectra was strongly dependent on the immersion time. In the second approach, the H2O2 solution influences not only the quality of the seed layer, but also the amount of the oxygen interstitial defects in the ZnO nanorods grown thereon. As a result, the UV emission intensity from the ZnO nanorods is enhanced almost five times. The ZnO nanorod arrays with few oxygen interstitial defects are prepared by the hydrogen peroxide treatment and expected to enable the fabrication of optoelectronic device with excellent performance.  相似文献   

15.
A low‐temperature synthetic route was used to prepare oriented arrays of ZnO nanorods on ITO conducting glass substrate coated with buffer layer of ZnO seeds in an aqueous solution. The corresponding growth behavior and optical properties of ZnO nanorod arrays were studied. It was found that the nature of the buffer layer had effect on the microstructures and optical properties of the resultant ZnO nanorod arrays. X‐ray diffraction (XRD) results showed the nanorods were preferentially grown along (002) direction, but the diameter of the nanorods prepared with the buffer layer was much smaller than the without one, which can be clearly seen from the scanning electron microscopy (SEM) results. And it also found that the buffer layer was not only enhanced the density of overall coverage but also beneficial to grown the oriented arrays. Photoluminescence spectroscopy (PL) results indicated that the all the samples had the better optical behaviors. By computation, the relative PL intensity ratio of ultraviolet emission (IUV) to deep level emission (IDLE) of ZnO nanorods grown with the pure substrate was much higher than that of the sample with the buffer layer. The defects on the surface increased with the size reduction of nanorods caused by the buffer layer may be the main reason for it. And the small shift in the UV emission was caused by the rapid reduction in crystal size and compressive stress from Raman spectra results. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Aluminium doped ZnO (AZO) nanorods were synthesized by microemulsion method with different types of surfactants. Scanning electron microscopy observations show that the ZnO nanorods have diameters around about 80 nm and lengths up to several micrometers. The room temperature photoluminescence (PL) spectrum of AZO nanorods exhibited a sharp and strong ultraviolet bandgap at 383 nm and a relatively weaker emission associated with the defect level. AZO nanorods synthesized with sodium benzene sulfonate (SBS) surfactant showed lower resistivity than aluminum doped ZnO nanorods synthesized with dodecyl benzene sulfonic acid sodium salt (DBS) surfactant. Resistivity of AZO nanorods synthesized with SBS surfactant showed 2.8×103 Ωcm. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
ZnO nanorods were synthesized on NiCl2‐coated Si substrates via a chemical vapor deposition (CVD) process. The as‐fabricated nanorods with diameters ranging from 150 nm to 200 nm and lengths up to several tens of micrometers grew preferentially arranged along [0001] direction, perpendicular to the (0002) plane. The clear lattice fringes in HRTEM image demonstrated the growth of good quality hexagonal single‐crystalline ZnO. Room temperature photoluminescence (PL) spectra illustrated that the ZnO nanorods exhibit strong UV emission peak and green emission peak, peak centers located at 388 nm and 506 nm. A possible growth mechanism based on the study of our X‐ray diffraction (XRD), electron microscopy and PL spectroscopy was proposed, emphasizing the effect of NiCl2 solution (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号