首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our goal was to determine the cytotoxicity of 7-OH-hydroxystaurosporine (UCN-01) as a single agent and in combination with cis-diamminedichloroplatinum(II) (CDDP) in a panel of ovarian carcinoma cells. We sought to examine the role of p53 gene function and alterations in cell cycle progression or other mechanisms of action of UCN-01 including perturbation of the apoptosis pathway mediated by NF-kappaB and Bcl-2/Bax. Cytotoxicity was determined from dose-response curves established by the Alamar blue vital dye indicator assay. Restoration of wild-type p53 in a p53 null cell line, SKOV 3, was achieved by transfection of a p53 expression vector. Cell cycle distribution was measured by fluorescence-activated cell sorting analysis of ethidium bromide-stained nuclei. Apoptosis was measured by quantitative fluorescence microscopy. NF-kappaB DNA binding activity was measured by electrophoretic mobility shift assay. Bcl-2 and Bax levels were determined by Western immunoblotting. UCN-01 was effective as a cytotoxic agent alone and in combination with CDDP in all cell lines studied, regardless of p53 status. The degree of sensitization to CDDP conferred by UCN-01, however, was found to correlate with p53 gene status. p53 wild-type cells seem to be more sensitive to the cytotoxic effects of the combination of UCN-01 + CDDP than the p53 mutant cells. This was confirmed in cells in which p53 wild-type function was restored by transfection of p53 cDNA, but these cells are also significantly more sensitive to CDDP alone. The effects of UCN-01 on cell cycle progression also appear to be p53 dependent but may not be the primary mechanism of action. The rate of apoptosis is increased 4-fold in UCN-01 + CDDP-treated cells compared to either agent alone. UCN-01 does not effect NF-kappaB DNA binding activity or Bcl-2 and Bax levels. UCN-01 enhances CDDP cytotoxicity and apoptosis in ovary cancer cells. This occurs regardless of p53 status, but wild-type p53 seems to increase the degree of sensitization.  相似文献   

2.
Synergy (or antagonism) between two chemical agents is an in vitro empirical phenomenon, in which the observed effect of the combination is more (or less) than what would be predicted from the effects of each agent working alone. Although mathematical synergy is not directly provable in the clinical setting, it does predict a favorable outcome when the two therapeutics are combined in vivo and strongly suggests the presence of in vivo synergy. In contrast, overt antagonism warns of future problems. Sophisticated three-dimensional statistical modeling was used to evaluate the presence of synergistic, additive, or antagonistic efficacy between adenovirus (Ad)-mediated p53 gene therapy (p53 Ad) and paclitaxel (Taxol) in a panel of human tumor cell lines. Cells were either pretreated with paclitaxel 24 h before p53 Ad or treated with both agents simultaneously. Cell proliferation was measured 3 days later. Paclitaxel had synergistic or additive efficacy with p53 gene therapy. In no case was the interaction antagonistic. Cell cycle analysis demonstrated that p53 Ad arrested cells in G0/G1 prior to apoptotic cell death, whereas paclitaxel arrested cells in G2-M prior to apoptotic cell death. When combined, the relative concentration of each agent determined the dominant cellular response. These results are consistent with the previously reported cell cycle effects of p53 or paclitaxel, respectively; however, these data fail to explain the observed drug synergy. We found that low concentrations of paclitaxel (1-14 nM) increased the number of cells transduced by recombinant Ad 3-35% in a dose-dependent manner, which is one possible mechanism for the observed synergy. Of particular note, the concentrations of paclitaxel responsible for increased Ad transduction were lower than the concentrations required for microtubule condensation. The efficacy of combination therapy was also evaluated in vivo. In the p53null SK-OV-3 xenograft model of ovarian cancer, a dosing schedule of p53 Ad that, by itself, had a relatively minimal effect on tumor burden (16%) caused a much greater decrease in tumor burden (55%) when combined with paclitaxel. Greater combined efficacy was also observed in the p53mut DU-145 prostate, p53mut MDA-MB-468 breast, and p53mut MDA-MB-231 breast cancer xenograft models in vivo. In summary, p53 Ad for cancer shows enhanced efficacy when combined with paclitaxel. This combination is recommended for clinical cancer trials.  相似文献   

3.
In many cell types, p53-mediated growth inhibition is dependent on induction of p21, which is an inhibitor of cyclin-dependent kinases that are required for cell cycle progression. Failure of mutant p53 proteins to transactivate p21 may lead to uncontrolled proliferation. Because many ovarian cancers have mutations in the p53 gene, we examined p21 levels in normal and malignant ovarian epithelial cells to determine whether p21 expression is dependent on wild-type p53. Normal ovarian epithelial cells and two ovarian cancer cell lines with wild-type p53 expressed readily detectable levels of p21, whereas in p53 null and mutant cell lines, expression of p21 was diminished strikingly. A correlation between the status of the p53 gene and p21 expression also was noted in 23 primary epithelial ovarian cancers. Normal levels of p21 RNA were seen in 4/7 (57%) cancers with wild-type p53, whereas 14/16 (88%) cancers with mutant p53 had reduced p21 expression (P < 0.05). In addition, we found that lambda-irradiation of normal and malignant ovarian epithelial cells with wild-type, but not mutant, p53 resulted in induction of p21. These data are suggestive that induction of p21 is a feature of p53-mediated growth inhibition in normal ovarian epithelial cells. Conversely, mutation of the p53 gene in ovarian cancers usually is associated with decreased p21 expression. The lack of an absolute correlation between p21 expression and the status of the p53 gene in ovarian cancers is consistent with other studies that have suggested that p21 may also be regulated by p53-independent pathways.  相似文献   

4.
OBJECTIVE: To study the effects on biologic behavior in cells obtained from human ovarian cancer cell line SKOV-3 into which the wild-type p53 cDNA was introduced. METHOD: Recombinant eukaryotic expression vector pC53-SN3 containing full-length human wild-type p53 cDNA and vector containing neomycin resistance gene only were introduced by lipofectamine-mediated gene transfection into SKOV-3 cell line which does not express endogenous p53. The clones obtained were observed for their biologic behavior. RESULTS: (1) 2 clones named pC53 and 2 clones named pNeo were obtained after pC53-SN3 and vector transfection respectively; (2) The morphology of cells either from pC53 or from pNeo did not change significantly with respect to their parental SKOV-3; (3) The growth rate of cells from pC53 was much slower than that from SKOV-3, while the cell growth curve of pNeo was similar to that of SKOV-3; (4) The number of colones formed in the soft-agar by pC53 was significantly less than that by SKOV-3 or by pNeo; (5) The percentage of phase G1/G0 of pC53 was much higher than that of SKOV-3 and pNeo. CONCLUSION: Wild-type p53 cDNA may be considered as one of the target genes for the gene therapy of ovarian cancer.  相似文献   

5.
Anaplastic thyroid carcinomas very often harbor the mutations in the tumor suppressor gene p53. We have previously shown that wild-type (wt) p53 gene introduction led to cell growth arrest, but not apoptosis, in p53-null anaplastic thyroid carcinoma cells. The present studies were designed to evaluate other therapeutic effects of wt-p53 gene introduction on p53-null thyroid carcinoma cells, as chemo- and radiosensitization and inhibition of angiogenesis have also been described recently as additional therapeutic advantages of wt-p53 gene introduction in tumor cells with p53 mutations. A p53-null anaplastic thyroid carcinoma cell line, FRO, and a FRO subline stably expressing a temperature-sensitive (ts) mutant of p53 (p53Val138), tsFRO, were used. ts-p53 functions as mutant and wt at nonpermissive (37 C) and permissive (32 C) temperatures, respectively. tsFRO showed a prolonged cell doubling time compared to parental FRO when cultured at 32 C, but the cell growth rate was similar between FRO and tsFRO at 37 C. The cytotoxic and clonogenic assays demonstrated that although the sensitivity to three different anticancer agents (cisplatin, 5-fluorocytosine, and doxorubicin) was unaltered, radiosensitivity was enhanced in tsFRO compared to FRO at 32 C. Unexpectedly, in studies on angiogenesis, expression levels of vascular endothelial growth factor (an angiogenic factor) messenger ribonucleic acid were similar between FRO and tsFRO, and thrombospondin-1 (an antiangiogenic factor) messenger ribonucleic acid and protein levels were about 2.5-fold lower in tsFRO than FRO at 32 C, although any difference could not be detected in their ability to inhibit in vitro angiogenesis with the culture medium conditioned by tsFRO and FRO at 32 C. These results suggest that p53-defective thyroid carcinomas may benefit from the combination of p53 gene therapy and radiotherapy. However, further study will be necessary to clarify the pathological significance of thrombospondin-1 in angiogenesis and thyroid tumor growth.  相似文献   

6.
Loss of function of the p53 tumour suppressor gene is a frequent and important event in the genesis or progression of many human malignancies. Loss of p53 dependent apoptosis is believed to be critical to carcinogenesis in many of these cases, suggesting the possibility to therapeutically restore this pathway and directly eliminate malignant cells or increase or restore their sensitivity to chemotherapeutic agents. The regulation of p53-dependent responses is complex and variable between cell types, and whether a cell undergoes apoptosis after activation of p53 is highly sensitive to signal context, including environmental and cell intrinsic influences. This article focuses upon p53-dependent apoptosis, considering current understanding of the biochemical steps involved, the factors determining selection of apoptosis over other p53-dependent responses, the significance of p53-dependent apoptosis for the genesis, progression and drug resistance of human cancers, and finally the prospects for clinical manipulation of this pathway in cancer therapy.  相似文献   

7.
p53     
  相似文献   

8.
BACKGROUND: It has been suggested that increased numbers of ovulations might increase the risk of p53 gene (also known as TP53) mutation in the ovarian epithelium, thereby leading to the development of cancer. The data supporting this hypothesis have come from an observation that accumulation of p53 protein in epithelial ovarian cancer was strongly associated with increasing numbers of ovulatory cycles. We have further investigated the association between ovulatory history and p53 gene mutation by use of data from a large case-control study of ovarian cancer in Australia. METHODS: Tissue blocks were available for immunohistochemical analysis of p53 protein from 234 case subjects, aged 18-79 years, who had invasive epithelial ovarian cancer. Epidemiologic data were also available for these women and for 855 control subjects. Case-case comparisons were made by use of prevalence ratios and 95% confidence intervals (CIs), and case-control comparisons were made by use of odds ratios (ORs) and 95% CIs. All statistical tests were two-sided. RESULTS: There was no association between p53 accumulation and years of ovulation. Women with p53-positive cancers had undergone an average of 29.3 years of ovulation compared with 29.0 years of ovulation for women with p53-negative cancers (P=.8). Although the overall risk of ovarian cancer development was significantly increased in women who had undergone more years of ovulation (OR=2.17; 95% CI =1.54-3.05-for > or =35 years versus <23 years of ovulation), there was no difference in the risk associated with p53-positive and p53-negative cancers. CONCLUSIONS: These results confirm the association between increased ovulation and ovarian cancer risk but do not support the hypothesis that this association is due to an increased risk of p53 mutation with a greater number of ovulatory cycles.  相似文献   

9.
Wild-type p53 is induced by DNA damage. In different cell types, this induction is suggested either to facilitate DNA repair by inducing a cell cycle pause or to potentiate cell death via apoptosis. Wild-type p53 in different cell types has similarly been associated with either enhancement of or increased resistance to the cytotoxicity of many cancer therapeutic agents. We have constructed a colorectal cancer cell line bearing, in addition to endogenous mutant p53 alleles, an exogenous wild-type p53 allele that is under the regulatable control of the lac repressor. Induction of wild-type p53 by isopropyl-beta-thiogalactopyranoside in these cells induces a reversible growth arrest but does not induce cell death. However, we find that the induction of wild-type p53 powerfully potentiates the cytotoxicity of both irradiation and 5-fluorouracil, two agents that are used clinically in the treatment of colorectal cancer. We also find that induction of wild-type p53 potentiates the cytotoxicity of topotecan, a member of the camptothecin family of drugs that also has clinical activity against colon cancer. These findings suggest that the common loss of wild-type p53 in many colorectal cancers may play a role in the clinical resistance of these tumors to anticancer agents. Although some cancer cells may not be directly killed by p53 gene therapy, our findings suggest that genetic alteration of some cancers to induce wild-type p53 may increase their sensitivity to cytotoxic gene therapy.  相似文献   

10.
11.
Recent advances in molecular biology have demonstrated that multistep genetic alterations are involved in the carcinogenesis of human colorectal cancer and that alteration of the p53 gene by mutation, deletion, or rearrangement is a major factor in this process. Human gene therapy has become a reality with the development of effective techniques for delivering the gene to the target cells. The efficacy of gene therapy for various types of genetic disease now being evaluated in clinical trials. These findings led us to develop a novel gene therapeutic strategy for human colorectal cancer that could replace the abnormal p53 gene using a recombinant, replication-defective adenoviral vector (termed Adp53). Infection with Adp53 induced rapid apoptotic cell death in DLD-1 and LoVo human colorectal cancer cell lines differing in their p53 status. Treatment with cisplatin following infection with Adp53 significantly suppressed the growth of WiDr colorectal cancer cells compared to single treatments alone. Thus restoration of wild-type p53 function exhibited an antitumor effect by inducing apoptosis as well as by markedly enhancing the effect of common chemotherapeutic agents in human colorectal cancer cells. In addition, Adp53 infection was antiangiogenic in SW620 human colorectal cancer cells. The application of this technology to human cancer therapy is now in progress. The article reviews recent highlights in this rapidly evolving field.  相似文献   

12.
The p53 tumor suppressor gene encodes a nuclear phosphoprotein with growth inhibiting properties, which is activated in cell exposed to various forms of DNA damaging stress. The development of human cancer often involves inactivation of this suppressor through various mechanisms, including gene deletions and point mutations. Most mutations impair the specific DNA-binding capacity of p53, therefore allowing cells to proliferate in conditions where cells with intact p53 function are suppressed or eliminated. Thus, mutation of p53 may provide a selective advantage for the clonal expansion of preneoplastic or neoplastic cells. The diversity of p53 mutations provides a valuable tool to identify important sources of cancer-causing mutation in the human setting. Mutagens and carcinogens damage the genome in characteristics ways, leaving "mutagen fingerprints" in DNA. Well-characterised examples of such "fingerprints" include G: C to T: A transversions in lung cancers in association with cigarette smoke, G: C to T: A transversions at codon 249 in liver cancers in association with dietary exposure to Aflatoxin B1 (AFB1) and CC: GG to TT: AA tandem dipyrimidine transitions in skin cancers in association with UVB exposure. In addition, mutations at different codons are not functionally equivalent. The availability of crystal structures of p53 protein represents an essential development in the understanding of the functional properties of p53 mutants. In the future, it is expected that analysis of p53 mutations may provide useful information for the diagnosis, prognosis and therapy of cancer.  相似文献   

13.
Photodynamic therapy (PDT) is an effective local cancer treatment that induces cytotoxicity through the intracellular generation of reactive oxygen species. The current study investigated whether abrogation of wild-type p53 expression modified the sensitivity of tumor cells to PDT-mediated oxidative stress. In these experiments, human colon (LS513) and breast (MCF-7) carcinoma cells exhibiting a wild-type p53 phenotype were directly compared to LS513 and MCF-7 cells with abrogated p53 function induced by stable integration of the human papillomavirus type 16 E6 viral oncoprotein. The effectiveness of this viral oncoprotein to target p53 for degradation was confirmed using a p53 transactivation reporter gene assay. Western analysis also confirmed attenuated expression of p53 in E6-transfected cells. Photosensitivity of PDT-treated cells was measured by a clonogenic assay and found to be equivalent for parental and p53-abrogated cells. PDT-mediated oxidative stress resulted in a rapid shift of pRb from a hyperphosphorylated form to a predominantly underphosphorylated form in parental cells that was not preceded by increases in p53 or p21 expression. Hypophosphorylated pRb was also observed in PDT-treated LS513/E6 and MCF-7/E6 cells, further indicating that p53 was not involved in this process. Delayed expression of p53 and p21 proteins was seen in parental cells 24-48 h after photosensitization. Cell cycle analysis showed that the abrogation of p53 had minimal effects on an observed PDT-induced G1 block. Rapid induction of apoptosis was documented in PDT-treated LS513 cells, whereas LS513/E6 treated cells exhibited reduced apoptosis in response to PDT. The MCF-7 cell lines exhibited a minimal apoptotic response to PDT. These results indicate that p53 expression does not directly modulate tumor cell sensitivity to PDT in either apoptosis-responsive (LS513) or nonresponsive (MCF-7) cells.  相似文献   

14.
15.
We investigated the p53 status and the ability of exogenous wildtype (wt) p53 to affect chemosensitivity in three anaplastic thyroid carcinoma cell lines (BHT-101, SW-1736, and KAT-4). All three cell lines had nonfunctional p53. Treatment with mitomycin C or adriamycin did not result in accumulation of p53 or induction of p21WAF1/CIP1 or Mdm-2 and did not cause Rb dephosphorylation. BHT-101 and KAT-4 cells had mutant p53. SW-1736 cells were functionally mutant because of marked down-regulation of wt p53 messenger ribonucleic acid, representing a novel mechanism of p53 dysfunction. Infection with a p53-expressing adenovirus (Ad-p53) induced high levels of p21 and Mdm-2 proteins. In BHT-101 cells, induction of p21 and Mdm-2 was evident 10 h after infection. In KAT-4 cells, induction of p21 and Mdm-2 was observed 1 day after infection, and continued to increase over the ensuing 24 h. SW-1736 cells demonstrated intermediate kinetics. Sensitivity to the cytotoxic effect of Ad-p53 paralleled the kinetics of p21/Mdm-2 induction. BHT-101 cells were most sensitive to killing by Ad-p53, with an IC50 of less than 2 multiplicity of infection; SW-1736 cells were intermediate in sensitivity; KAT-4 cells were resistant. All three cell lines became more sensitive to adriamycin after wt p53 expression, with a 10-fold decrease in IC50 values. The latter observation may make a combination of wt p53 and chemotherapeutic drugs an attractive modality for treating anaplastic thyroid cancer.  相似文献   

16.
In order to reveal whether differences in the type and site of p53 gene mutations influence the function of the gene and tumor phenotype, we examined nuclear accumulation of the p53 protein immunohistochemically, loss of the other p53 allele by restriction-fragment-length polymorphism analysis, and histological grade of atypia in 52 breast-cancer tissue specimens in which the position and pattern of the mutation were identified. When mis-sense point mutations or deletions of 3n bases (n = 1, 2, ...), which did not cause a frameshift downstream, occurred within codons 110-180 or 234-285, containing highly conserved regions, the p53 protein was almost always (92%) accumulated in nuclei in a majority of the cancer cells. When these mutations occurred outside these regions, only 46% of the cases showed nuclear accumulation of the protein in a majority of cancer cells. In tumors with non-sense point mutations or deletion of 3n + 1 or 3n + 2 bases (n = 0, 1, 2, ...), which caused a downstream frameshift, nuclear accumulation of the p53 protein was absent in 93% of cases. Irrespective of the mutation site or pattern, a majority of cases showing p53 mutation revealed loss of heterozygosity on 17p13 (83%), which suggested they do not carry wild-type p53 allele, and the highest histological grade of atypia (90%). Regardless of differences in their protein-expression pattern, a majority of the p53 gene mutations were suggested to function in a recessive mode and to be involved in the development of histologically aggressive breast cancer.  相似文献   

17.
p53 has been implicated as a determinant of chemosensitivity and radiosensitivity. We measured chemosensitivity of human tumor cell lines (n = 11), with or without wild-type p53, following exposure to clinically useful chemotherapeutic drugs (n = 4). Chemosensitivity and apoptosis induction were correlated independently of p53 status or Bcl-2 protein levels in vitro. Wild-type p53 correlated with chemosensitivity in ovarian carcinoma and some Burkitt's lymphoma cells, but not in leukemia or lung cancer. Bcl-2 levels correlated with chemoresistance only in Burkitt's lymphoma. p53-dependent p21(WAF1/CIP1) induction and cell cycle arrest occurred at sublethal doses of chemotherapy, whereas at lethal doses of chemotherapy apoptotic death was observed, consistent with models proposing a relationship between the level of DNA damage versus survival or death. Loss of apoptosis induction was observed in drug-resistant ML-1 and HL-60 leukemia cells, without changes in p53 or Bcl-2. Targeted loss of p53 protein in H460 lung cancer cells using HPV-16 E6 inhibited the etoposide-induced G1 checkpoint but did not decrease chemosensitivity. Our studies suggest that the simple measurement of apoptosis induction may be a useful predictor of chemosensitivity, at least in vitro, and confirm that p53 status and Bcl-2 expression may be useful predictors of chemosensitivity in certain cell types.  相似文献   

18.
We investigated the role of p53 and of the Bcl-2 family proteins in the apoptotic response of a panel of testicular tumour cell lines (NT2, NCCIT, S2 and 2102 EP). The p53 gene status and the capacity of the p53 protein to transactivate the p21/WAF/CIP gene were determined, and we examined the correlation between p53 status and the susceptibility to cisplatin-induced apoptosis. In contrast to wild-type p53-containing NT2 and 2102 EP cells, NCCIT (mutant p53) and S2 (no p53 protein) cells were shown to be p53-transactivation defective. However, NCCIT and S2 cells with non-functional p53 were readily triggered into apoptosis by cisplatin, whereas p53-transactivation competent 2102 EP cells failed to undergo cisplatin-induced apoptosis. The defective apoptotic pathway in 2102 EP cells was reflected by a 4-fold decreased sensitivity to cisplatin in the MTT assay. We further demonstrated that the p53-independent differential cisplatin sensitivity among the testicular germ cell tumour (TGCT) cell lines was not due to differences in cellular cisplatin accumulation or DNA platination. The pattern of endogenous expression levels of Bax, Bcl-2, Bcl-x and Bak, which was not modulated by cisplatin treatment, demonstrated that these Bcl-2 family proteins are not involved in drug-induced apoptosis in the TGCT cell lines. Our results suggest a lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in our panel of TGCT cell lines. We conclude that the cisplatin-induced apoptotic pathway in TGCT cell lines might be p53-independent and is probably not associated with differences in the Bcl-2/Bax rheostat.  相似文献   

19.
Prompt reconstitution of hematopoiesis after cytoreductive therapy is essential for patient recovery and may have a positive impact on long-term prognosis. We examined the role of the p53 tumor suppressor gene in hematopoietic recovery in vivo after treatment with the cytotoxic drug 5-fluorouracil (5-FU). We used p53 knock-out (p53-/-) and wild-type (p53+/+) mice injected with 5-FU as the experimental model. Analysis of the repopulation ability and clonogenic activity of hematopoietic stem cells (HSCs) and their lineage-committed descendants showed a greater number of HSCs responsible for reconstitution of lethally irradiated recipients in p53-/- bone marrow cells (BMCs) recovering after 5-FU treatment than in the corresponding p53+/+ BMCs. In post-5-FU recovering BMCs, the percentage of HSC-enriched Lin- Sca-1(+) c-Kit+ cells was about threefold higher in p53-/- than in p53+/+ cells. Although the percentage of the most primitive HSCs (Lin- Sca-1(+) c-Kit+ CD34(low/-)) did not depend on p53, the percentage of multipotential HSCs and committed progenitors (Lin- Sca-1(+) c-Kit+ CD34(high/+)) was almost fourfold higher in post-5-FU recovering p53-/- BMCs than in their p53+/+ counterparts. The pool of HSCs from 5-FU-treated p53-/- BMCs was exhausted more slowly than that from the p53+/+ population as shown in vivo using pre-spleen colony-forming unit (CFU-S) assay and in vitro using long-term culture-initiating cells (LTC-ICs) and methylcellulose replating assays. Clonogenic activity of various lineage-specific descendants was significantly higher in post-5-FU regenerating p53-/- BMCs than in p53+/+ BMCs, probably because of their increased sensitivity to growth factors. Despite all these changes and the dramatic difference in sensitivity of p53-/- and p53+/+ BMCs to 5-FU-induced apoptosis, lineage commitment and differentiation of hematopoietic progenitors appeared to be independent of p53 status. These studies suggest that suppression of p53 function facilitates hematopoietic reconstitution after cytoreductive therapy by: (1) delaying the exhaustion of the most primitive HSC pool, (2) stimulating the production of multipotential HSCs, (3) increasing the sensitivity of hematopoietic cells to growth factors, and (4) decreasing the sensitivity to apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号