首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
We consider the damping of large-amplitude solitary waves in the framework of the extended Korteweg-de Vries equation (that is, the usual Korteweg-de Vries equation supplemented with a cubic nonlinear term) modified by the inclusion of a small damping term. The damping of a solitary wave is studied for several different forms of friction, using both the analytical adiabatic asymptotic theory and numerical simulations. When the coefficient of the cubic nonlinear term has the opposite sign to the coefficient of the linear dispersive term, the extended Kortweg-de Vries equation can support large-amplitude “thick” solitary waves. Under the influence of friction, these “thick” solitary waves decay and may produce one or more secondary solitary waves in this process. On the other hand, when the coefficient of the cubic nonlinear term has the same sign as the coefficient of the linear dispersive term, but the opposite sign to the coefficient of the quadratic nonlinear term, the action of friction may cause a solitary wave to decay into a wave packet.  相似文献   

2.
A new group of wavelets that have the form of solitary waves and are the solutions of the wave equations for dispersive media is proposed to call elastic wavelets. That this group includes well-known Mexican-hat wavelets is proved. It is proposed to use elastic wavelets to study local features of the profile evolution of a solitary wave in an elastic dispersive medium  相似文献   

3.
研究了梁中的非线性弯曲波的传播特性,同时考虑了梁的大挠度引起的几何非线性效应和 梁的转动惯性导致的弥散效应,利用Hamilton变分法建立了梁中非线性弯曲波的波动方程. 对该方程进行了定性分析,在不同的条件下,该方程在相平面上存在同宿轨道或异宿轨道, 分别对应于方程的孤波解或冲击波解. 利用Jacobi椭圆函数展开法,对该非线性方程进行 求解,得到了非线性波动方程的准确周期解及相对应的孤波解和冲击波解,讨论了这些解存 在的必要条件,这与定性分析的结果完全相同. 利用约化摄动法从非线性弯曲波动方程中导 出了非线性Schr\"{o}dinger方程,从理论上证明了考虑梁的大挠度和转动惯性时梁中存在 包络孤立波.  相似文献   

4.
This paper presents an automatic algorithm for detecting and generating solitary waves of nonlinear wave equations. With this purpose, dynamic simulations are carried out, the solution of which evolves into a main pulse along with smaller dispersive tails. The solitary waves are detected automatically by the algorithm by checking that they have constant amplitude and are symmetric respect to its maximum value. Once the main wave has been detected, the algorithm cleans the dispersive tails for time enough so that the solitary wave is obtained with the required precision.In order to use our algorithm, we need a spatial discretization with local basis. The numerical experiments are carried out for the BBM equation discretized in space with cubic finite elements along with periodic boundary conditions. Moreover, a geometric integrator in time is used in order to obtain good approximations of the solitary waves.  相似文献   

5.
We consider herein the Ostrovsky equation which arises in modeling the propagation of the surface and internal solitary waves in shallow water, or the capillary waves in a plasma with the effects of rotation. Using the modified sliding method, we prove that the solitary wave moving to the left to the Ostrovsky equation is symmetric about the origin and unique up to translations. We also establish the regularity and decay properties of solitary waves and obtain some results of the nonexistence of solitary wave solutions depending on the wave speed, weak rotation, and dispersive parameter.  相似文献   

6.
In [1] a system of equations was obtained for the case of a potential motion of an ideal incompressible homogeneous fluid; the system described the propagation of a train of waves in a medium with slowly varying properties, the motion in the train being characterized by a wave vector and a frequency. A solitary wave is a particular case of a wave train in which the length of the waves in the train is large. In [2, 3] a quasilinear system of partial differential equations was obtained which described two-dimensional and three-dimensional motion of a solitary wave in a layer of liquid of variable depth. It follows from this system that if the unperturbed state of the liquid is the quiescent state, then some integral quantity (the average wave energy [2–4]), referred to an element of the front, is preserved during the course of the motion. This fact is also valid for a train of waves, and can be demonstrated to be so upon applying the formalism of [1] to a Lagrangian similar to that used in [2]. In the present paper we obtain, for the case of a layer of liquid of constant depth, a solution in the form of simple waves for a system, equivalent to the system obtained in [3], describing the motion of a solitary wave and also the motion of a train of waves. We show that it is possible to have tilting of simple waves, leading in the case considered here to the formation of corner points on the wave front. We consider several examples of initial perturbations, and we obtain their asymptotics as t→∞. We make our presentation for the solitary wave case; however, in view of our statement above, the results automatically carry over to the case of a train of waves.  相似文献   

7.
内孤立波是一种发生在水面以下的在世界各个海域广泛存在的大幅波浪, 其剧烈的波面起伏所携带的巨大能量对以海洋立管为代表的海洋结构物产生严重威胁, 分析其传播演化过程的流场特征及立管在内孤立波作用下的动力响应规律对于海洋立管的设计具有重要意义. 本文基于分层流体的非线性势流理论, 采用高效率的多域边界单元法, 建立了内孤立波流场分析计算的数值模型, 可以实时获得内孤立波的流场特征. 根据获得的流场信息, 采用莫里森方程计算内孤立波对海洋立管作用的载荷分布. 将内孤立波流场非线性势流计算模型与动力学有限元模型结合来求解内孤立波作用下海洋立管的动力响应特征, 讨论了内孤立波参数、顶张力大小以及内部流体密度对立管动力响应的影响. 发现随着内孤立波波幅的增大, 海洋立管的流向位移和应力明显增大. 由于上层流体速度明显大于下层, 且在所研究问题中拖曳力远大于惯性力, 因此管道顺流向的最大位移发生在上层区域. 顶张力通过改变几何刚度阵的值进而对立管的响应产生明显影响. 对于弱约束立管, 内部流体的密度对管道的流向位移影响较小.   相似文献   

8.
The existence of traveling solitary waves, the products of modulation instability in a cold quasi-neutral plasma, is considered. Solitary waves of this type (solitary wave trains) are formed as a result of bifurcation from a nonzero wave number of the linear wave spectrum. It is shown that the complete system of equations describing the wave process in a cold plasma has solutions of the solitary wave train type, at least when the undisturbed magnetic field is perpendicular to the wave front. Sufficient conditions of existence of solitary wave trains in weakly dispersive media are also formulated.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 154–161, September–October, 1996.  相似文献   

9.
On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, and taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations are derived. Qualitative analysis of three kinds of nonlinear equations are presented. It is shown that these equations have homoclinic or heteroclinic orbits on the phase plane, corresponding to solitary wave or shock wave solutions, respectively. Based on the principle of homogeneous balance, these equations are solved with the Jacobi elliptic function expansion method. Results show that existence of solitary wave solution and shock wave solution is possible under certain conditions. These conclusions are consistent with qualitative analysis.  相似文献   

10.
In this paper, an infinite family of solutions describing solitary wave packets with a finite number of nodes is presented. These structures arise from the study of damping in the framework of non-linear ordinary differential equations with oscillatory behaviour. Usually one expects to find effects of this kind in physical systems described by a set of partial differential equations. The standard argument is that the non-linear term acts against the dispersive flux and this balance explains the appearance of solitary waves. Here we show that the non-linear oscillatory behaviour can also balance the effect of damping in special cases. The theory used to discriminate among the various possibilities is plain Painlevé analysis. Several physical applications are briefly discussed.  相似文献   

11.
Zhan Wang 《力学快报》2022,12(1):100315
A unidirectional, weakly dispersive nonlinear model is proposed to describe the supercritical bifurcation arising from hydroelastic waves in deep water. This model equation, including quadratic, cubic, and quartic nonlinearities, is an extension of the famous Whitham equation. The coefficients of the nonlinear terms are chosen to match with the key properties of the full Euler equations, precisely, the associated cubic nonlinear Schr?dinger equation and the amplitude of the solitary wave at the bifurcation point. It is shown that the supercritical bifurcation, rich with Stokes, solitary, generalized solitary, and dark solitary waves in the vicinity of the phase speed minimum, is a universal bifurcation mechanism. The newly developed model can capture the essential features near the bifurcation point and easily be generalized to other nonlinear wave problems in hydrodynamics.  相似文献   

12.
In this work, we present higher order solitary wave equations, in particular sixth order. We show how these equations can be derived using fundamental physics laws, such as the Ohm’s law. We use the Taylor series expansion and in some cases the Hirota’s bilinear operator to obtain these model equations. The sixth order solitary wave equations model different physical problems such as problems in the electrical domain and the propagation of dispersive water waves.  相似文献   

13.
A nonlinear transmission line (NLTL) is comprised of a transmission line periodically loaded with varactors, where the capacitance nonlinearity arises from the variable depletion layer width, which depends both on the DC and AC voltages of the propagating wave. An equivalent circuit model of NLTL is discussed analytically, in this article, and different type of solutions are celebrated. The improved extended tanh-function method has been applied successfully to extract the solutions. The obtained solutions are solitary wave solutions, singular periodic solutions, singular soliton solutions, Jacobi elliptic doubly periodic type solutions and Weierstrass elliptic doubly periodic type solutions. It is a very convenient tool to study the propagation of electrical solitons which propagate in the form of voltage waves in nonlinear dispersive media.  相似文献   

14.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

15.
A new nonlinear evolution equation is derived for surface solitary waves propagating on a liquid-air interface where the wave motion is induced by a harmonic forcing. Instead of the traditional approach involving a base state of the long wave limit, a base state of harmonic waves is assumed for the perturbation analysis. This approach is considered to be more appropriate for channels of length just a few multiples of the depth. The dispersion relation found approaches the classical long wave limit. The weakly nonlinear dispersive waves satisfy a KdV-like nonlinear evolution equation with steeper nonlinearity.  相似文献   

16.
The leading tail for slowly varying solitary waves for the perturbed Korteweg-de Vries (KdV) equation is analyzed. The path of the core of the solitary wave is obtained and shown to provide a moving boundary for the leading tail. The leading tail is predicted to be triple valued within a penumbral caustic (envelope of characteristics) caused by the initial acceleration of the core. A rescaling in the neighborhood of the singularity shows that the solution there satisfies the diffusion equation. The solution involves an incomplete Airy-type exponential integral, where critical points (significant for Laplace's asymptotic method) satisfy the structure of the penumbral caustic. A wave number shock develops, which separates two different solitary wave tails, one due to the moving core and the other due to the initial condition. The shock velocity is that predicted from conservation of waves.  相似文献   

17.
We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular, we consider a KdV–BBM‐type equation. Explicit and implicit–explicit Runge–Kutta‐type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants' conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and their various interactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
数值模拟孤立波通过水下孤立方柱的粘性流动   总被引:2,自引:0,他引:2  
万德成  戴世强 《力学季刊》1998,19(4):297-304
本文用完整二维Navier-Stokes方程和VOF方法,研究孤立波通过淹没水下孤立直立方柱水域时的波形变化和粘性流场运动。本文对孤立波通过水下 孤立直方柱的情形进行了实例计算。给出了波形随时间的演化图,可以看到反射波、前传波和跟随的振荡型小波列的生成及涡流场的运动演化,并与势流计算结果进行了比较。  相似文献   

20.
I.IntroductionZabuskyandKruskal(l965)foundthattwoKdVsolitarywavesofthesamemodekeeptheiroriginalshapesandspeedsafterstronginteractions,andcalledthesewavessolitons.However,solitaryx"avessometimestravelintwodimensionalspace,otherthaninonedimensionalspace.Mil…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号