首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Air‐breathing hypersonic vehicles typically exhibit a nonminimum phase behavior when altitude is controlled via lift generation. This phenomenon prohibits the use of classical inversion‐based control techniques. Dynamic models of these vehicles are also subject to parametric uncertainties and unmodeled dynamics related to flexible effects of the fuselage. In this paper, we present a modular adaptive control method that achieves asymptotic setpoint tracking in both airspeed and altitude using thrust and elevator deflection as the only control inputs for a generic longitudinal model of a hypersonic cruise. The nonminimum phase problem is overcome through output redefinition, with altitude controlled by pitching moment. The internal dynamics, flight path angle, and altitude are then stabilized by saturating the interconnections and exploiting local stability properties. A new technique for the use of saturation functions in error coordinate is presented. The adaptive controller for altitude uses a pitch rate observer combined with projection. This control augmentation decouples the parameter estimation errors from internal dynamics, allowing for the use of small‐gain arguments. Simulation results from a vehicle model with flexible effects and parametric uncertainty are included to demonstrate control effectiveness.  相似文献   

2.
This paper proposes a novel control method for a special class of nonlinear systems in semi‐strict feedback form. The main characteristic of this class of systems is that the unmeasured internal states are non‐uniformly detectable, which means that no observer for these states can be designed to make the observation error exponentially converge to zero. In view of this, a projection‐based adaptive robust control law is developed in this paper for this kind of system. This method uses a projection‐type adaptation algorithm for the estimation of both the unknown parameters and the internal states. Robust feedback term is synthesized to make the system robust to uncertain nonlinearities and disturbances. Although the estimation error for both the unknown parameters and the internal states may not converge to zero, the tracking error of the closed‐loop system is proved to converge to zero asymptotically if the system has only parametric uncertainties. Furthermore, it is theoretically proved that all the signals are bounded, and the control algorithm is robust to bounded disturbances and uncertain nonlinearities with guaranteed output tracking transient performance and steady‐state accuracy in general. The class of system considered here has wide engineering applications, and a practical example—control of mechanical systems with dynamic friction—is used as a case study. Simulation results are obtained to demonstrate the applicability of the proposed control methodology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A direct adaptive nonlinear tracking control framework for multivariable nonlinear uncertain systems with actuator amplitude and rate saturation constraints is developed. To guarantee asymptotic stability of the closed‐loop tracking error dynamics in the face of amplitude and rate saturation constraints, the control signal to a given reference (governor or supervisor) system is modified to effectively robustify the error dynamics to the saturation constraints. Illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a nonlinear gain feedback technique for observer‐based decentralized neural adaptive dynamic surface control of a class of large‐scale nonlinear systems with immeasurable states and uncertain interconnections among subsystems. Neural networks are used in the observer design to estimate the immeasurable states and thus facilitate the control design. Besides avoiding the complexity problem in traditional backstepping, the new nonlinear feedback gain method endows an automatic regulation ability into the pioneering dynamic surface control design and improvement in dynamic performance. Novel Lyapunov function is designed and rigorous stability analysis is given to show that all the closed‐loop signals are kept semiglobally uniformly ultimately bounded, and the output tracking errors can be guaranteed to converge to sufficient area around zero, with the bound values characterized by design parameters in an explicit manner. Simulation and comparative results are shown to verify effectiveness.  相似文献   

5.
This paper is a generalization of the recently developed techniques of initial excitation (IE)–based adaptive control with an introduction to the definition of semi‐initial excitation (semi‐IE), a still more relaxed notion than IE. Classical adaptive controllers typically ensure Lyapunov stability of the extended error dynamics (tracking error + parameter estimation error) and asymptotic tracking, while requiring a stringent condition of persistence of excitation (PE) for parameter convergence. Of late, the authors have proposed a new adaptive control architecture, which guarantees parameter convergence under the online‐verifiable IE condition leading to exponential stability of the extended error dynamics. In earlier works, it has been established that the IE condition is significantly milder than the classical PE condition. The current work further slackens the excitation condition by proposing the concept of semi‐IE. The proposed adaptive controller is proved to ensure convergence of the parameter estimation error to a lower‐dimensional manifold under the weaker semi‐IE condition, while the stronger condition of IE guarantees convergence of the parameter estimation error to zero. The designed algorithm is shown to improve transient response of tracking error sufficiently in contrast to conventional adaptive controllers.  相似文献   

6.
This paper addresses the problem of designing a global, output error feedback based, adaptive learning control for robotic manipulators with revolute joints and uncertain dynamics. The reference signals to be tracked are assumed to be smooth and periodic with known period. By developing in Fourier series expansion the input reference signals of every joint, an adaptive, output error feedback, learning control is designed, which ‘learns’ the input reference signals by identifying their Fourier coefficients: global asymptotic and local exponential stability of the tracking error dynamics are obtained when the Fourier series expansion of each input reference signal is finite, while arbitrary small tracking errors are achieved otherwise. The resulting control is not model based and depends only on the period of the reference signals and on some constant bounds on the robot dynamics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Exact decentralized output‐feedback Lyapunov‐based designs of direct model reference adaptive control (MRAC) for linear interconnected delay systems with MIMO subsystems are introduced. The design process uses a co‐ordinated decentralized structure of adaptive control with reference model co‐ordination which requires an exchange of signals between the different reference models. It is shown that in the framework of the reference model co‐ordination zero residual tracking error is possible, exactly as in the case with SISO subsystems. We develop decentralized MRAC on the base of a priori information about only the local subsystems gain frequency matrices without additional a priori knowledge about the full system gain frequency matrix. To achieve a better adaptation performance we propose proportional, integral time‐delayed adaptation laws. The appropriate Lyapunov–Krasovskii type functional is suggested to design the update mechanism for the controller parameters, and in order to prove stability. Two different adaptive DMRAC schemes are proposed, being the first asymptotic exact zero tracking results for linear interconnected delay systems with MIMO subsystems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Design of global robust adaptive output‐feedback dynamic compensators for stabilization and tracking of a class of systems that are globally diffeomorphic into systems in generalized output‐feedback canonical form is investigated. This form includes as special cases the standard output‐feedback canonical form and various other forms considered previously in the literature. Output‐dependent non‐linearities are allowed to enter both additively and multiplicatively. The system is allowed to contain unknown parameters multiplying output‐dependent non‐linearities and, also, unknown non‐linearities satisfying certain bounds. Under the assumption that a constant matrix can be found to achieve a certain property, it is shown that a reduced‐order observer and a backstepping controller can be designed to achieve practical stabilization of the tracking error. If this assumption is not satisfied, it is shown that the control objective can be achieved by introducing additional dynamics in the observer. Sufficient conditions under which asymptotic tracking and stabilization can be achieved are also given. This represents the first robust adaptive output‐feedback tracking results for this class of systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an online data‐driven composite adaptive backstepping control for a class of parametric strict‐feedback nonlinear systems with mismatched uncertainties, where both tracking errors and prediction errors are utilized to update parametric estimates. Hybrid exact differentiators are applied to obtain the derivatives of virtual control inputs such that the complexity problem of integrator backstepping can be avoided. Closed‐loop tracking error equations are integrated in a moving‐time window to generate prediction errors such that online recorded data can be utilized to improve parameter adaptation. Semiglobal asymptotic stability of the closed‐loop system is rigorously established by the time‐scales separation and Lyapunov synthesis. The proposed composite adaptation can not only avoid the application of identification models and linear filters resulting in a simpler control structure, but also suppress parametric uncertainties and external perturbations via the time‐interval integral. Simulation results have demonstrated that the proposed approach possesses superior control performances under both noise‐free and noisy‐measurement environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
An alternative adaptive control with prescribed performance is proposed to address the output tracking of nonlinear systems with a nonlinear dead zone input. An appropriate function that characterizes the convergence rate, maximum overshoot, and steady‐state error is adopted and incorporated into an output error transformation, and thus the stabilization of the transformed system is sufficient to achieve original tracking control with prescribed performance. The nonlinear dead zone is represented as a time‐varying system and Nussbaum‐type functions are utilized to deal with the unknown control gain dynamics. A novel high‐order neural network with a scalar adaptive weight is developed to approximate unknown nonlinearities, thus the computational costs can be diminished dramatically. Some restrictive assumptions on the system dynamics and the dead‐zone are circumvented. Simulations are included to validate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the problem of adaptive multi‐dimensional Taylor network (MTN) decentralized tracking control for large‐scale stochastic nonlinear systems. Minimizing the influence of randomness and complex nonlinearity, which increases computational complexity, and improving the controller's real‐time performance for the stochastic nonlinear system are of great significance. With combining adaptive backstepping with dynamic surface control, a decentralized adaptive MTN tracking control approach is developed. In the controller design, MTNs are used to approximate nonlinearities, the backstepping technique is employed to construct the decentralized adaptive MTN controller, and the dynamic surface control technique is adopted to avoid the “explosion of computational complexity” in the backstepping design. It is proven that all the signals in the closed‐loop system remain bounded in probability, and the tracking errors converge to a small residual set around the origin in the sense of a mean quartic value. As the MTN contains only addition and multiplication, the proposed control method is more simplified and of good real‐time performance, compared with the existing control methods for large‐scale stochastic nonlinear systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed design approach, and simulation results demonstrate that the method presented in this paper has good real‐time performance and control quality, and the dynamic performance of the closed‐loop system is satisfactory.  相似文献   

12.
针对永磁同步电机(Permanent Mmagnet Synchronous Motor,PMSM)绕组相电流和转速强耦合特性和参数的不确定性,利用非线性Backstepping方法设计了自适应积分反步控制器,在补偿参数不确定性影响的同时实现PMSM高性能位置跟踪控制。借助于dSPACE平台,将系统模型下载到实时硬件中进行在线仿真。实时在线仿真结果表明,设计的PMSM控制系统可以获得满意的跟踪效果,其滤波跟踪误差迅速以指数特性收敛到零,具有较好的位置伺服控制特性。  相似文献   

13.
In this paper, the design procedure for optimal model‐free control algorithm is presented for the tracking problem of completely unknown nonlinear dynamic systems operating under unknown disturbances. The procedure includes a new structure in the context of model‐free control and data‐driven control algorithms. In the new structure, the unknown nonlinear functions are segmented into 1 unknown linear‐in‐states part and another unknown nonlinear part. The adaptive laws proposed for estimating the unknown system dynamics are regressor‐free estimation methods in which there is no need for regressor parameters and, consequently, the persistent excitation condition is not required anymore. Moreover, the main controller gains are updated online, incorporating the adapted values of linear terms in the system dynamics. A comparative study is presented to show that the proposed optimal model‐free control outperforms the state‐of‐the‐art model‐free control algorithms. In addition, the simulation results for the application of the algorithm on autonomous mobile robots are provided.  相似文献   

14.
This paper investigates the leader–follower consensus problem of uncertain nonlinear systems in strict‐feedback form. By parameterizations of unknown nonlinear dynamics of the agents, an adaptive dynamic surface control with the aid of predictors, tracking differentiators is proposed to realize output consensus of the multi‐agent systems. Unlike the existing adaptive consensus methods, the predictor errors are used to learn the unknown parameters, which can achieve fast learning without high‐frequency signals in control inputs. As a fast precise signal filter, the tracking differentiator is used in the control design instead of first‐order filters, which can further improve the control performance. Based on graph theory and Lyapunov stability theory, it is shown that the outputs of all followers ultimately synchronize to that of the leader with bounded tracking errors. Simulation results are provided to validate the effectiveness and advantage of the proposed consensus algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
一类不确定非线性系统的自适应模糊滑模控制   总被引:2,自引:0,他引:2  
针对一类不确定非线性系统自适应模糊控制中,为了保证系统稳定性而附加监督控制问题,根据滑模控制原理并利用模糊系统的逼近能力,提出了一种Ⅰ型间接自适应模糊滑模控制方法。该方法取消了监督控制,用滑模控制器增加了逼近误差的自适应补偿,李雅普诺夫稳定性理论分析证明,控制系统全局稳定且跟踪误差收敛到零。将这种控制器应用到过程控制的典型对象液位控制中,仿真结果表明了该控制器的有效性和可行性。  相似文献   

16.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Accurate and reliable control of planetary entry is a major challenge for planetary exploration vehicles. For Mars entry, uncertainties in atmospheric properties such as winds aloft and density pose a major problem for meeting precision landing requirements. Anticipated manned missions to Mars will also require levels of safety and fault tolerance not required during earlier robotic missions. This paper develops a nonlinear fault‐tolerant controller specifically tailored for addressing the unique environmental and mission demands of future Mars entry vehicles. The controller tracks a desired trajectory from entry interface to parachute deployment, and has an adaptation mechanism that reduces tracking errors in the presence of uncertain parameters such as atmospheric density, and vehicle properties such as aerodynamic coefficients and inertias. This nonlinear control law generates the commanded moments for a discrete control allocation algorithm, which then generates the optimal controls required to follow the desired trajectory. The reaction control system acts as a non‐uniform quantizer, which generates applied moments that approximate the desired moments generated by a continuous adaptive control law. If a fault is detected in the control jets, it reconfigures the controls and minimizes the impact of control failures or damage on trajectory tracking. It is assumed that a fault identification and isolation scheme already exists to identify failures. A stability analysis is presented, and fault tolerance performance is evaluated with non real‐time simulation for a complete Mars entry trajectory tracking scenario using various scenarios of control effector failures. The results presented in the paper demonstrate that the control algorithm has a satisfactory performance for tracking a pre‐defined trajectory in the presence of control failures, in addition to plant and environment uncertainties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
针对控制参数的不确定性以及存在未知外部扰动情况下移动机器人的轨迹跟踪问题,提出一种基于光滑非线性饱和函数的自适应模糊滑模轨迹跟踪控制算法。通过建立不确定非线性移动机器人运动控制模型,利用自适应模糊逻辑系统构建自适应模糊滑模控制器。为了增强轨迹跟踪控制算法对随机不确定外部扰动适应能力的同时削弱滑模控制算法中的输入抖振现象,利用有界输入有界输出(BIBO)稳定的方法,通过带有自适应调节算法的模糊系统对滑模控制律中非线性函数项进行自适应逼近,并设计了模糊系统中可调参数的自适应控制律,保证了控制系统的稳定与收敛。实验结果表明,所设计的控制器对系统参数不确定性和外界扰动均具有较强的轨迹跟踪性能和鲁棒性。与传统的滑模控制算法相比,该算法不仅能有效减小输入抖振而且轨迹跟踪控制精度提高了18.89%。  相似文献   

20.
In this paper, the discontinuous projection‐based adaptive robust control (ARC) approach is extended to a class of nonlinear systems subjected to parametric uncertainties as well as all three types of nonlinear uncertainties—uncertainties could be state‐dependent, time‐dependent, and/or dynamic. Departing from the existing robust adaptive control approach, the proposed approach differentiates between dynamic uncertainties with and without known structural information. Specifically, adaptive robust observers are constructed to eliminate the effect of dynamic uncertainties with known structural information for an improved steady‐state output tracking performance—asymptotic output tracking is achieved when the system is subjected to parametric uncertainties and dynamic uncertainties with known structural information only. In addition, dynamic normalization signals are introduced to construct ARC laws to deal with other uncertainties including dynamic uncertainties without known structural information not only for global stability but also for a guaranteed robust performance in general. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号