首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a robust actuator fault reconstruction scheme for linear uncertain systems using sliding mode observers. In existing work, fault reconstruction via sliding mode observers is limited to either linear certain systems subject to unknown inputs, relative degree one systems or a specific class of relative degree two systems. This paper presents a new method that is applicable to a wider class of systems with relative degree higher than one, and can also be used for systems with more unknown inputs than outputs. The method uses two sliding mode observers in cascade. Signals from the first observer are processed and used to drive the second observer. Overall, this results in actuator fault reconstruction being feasible for a wider class of systems than using existing methods. A simulation example verifies the claims made in this paper. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A robust high gain observer for state and unknown inputs/faults estimations for a special class of nonlinear systems is developed in this article. Ensuring the observability of the faults/unknown inputs with respect to the outputs, the faults can be estimated from the sliding surface. Under a Lipschitz condition for the nonlinear part, the high gain observers are designed under some regularity assumptions. In the sliding mode, the convergence of the estimation error dynamics is proven similar to the analysis of high-gain observers.  相似文献   

3.
This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using cascaded sliding mode observers (SMOs). The processed signals from a SMO are found to be the output of a fictitious system which treats the faults and disturbances as inputs; the ‘outputs’ are then fed into the next SMO. This process is repeated until the attainment of a fictitious system which satisfies the conditions that guarantee DDFR. It is found that this scheme is less restrictive and enables DDFR for a wider class of systems compared to previous work when only one or two SMOs were used. This paper also presents a systematic routine to check for the feasibility of the scheme and to calculate the required number of SMOs from the outset and also to design the DDFR scheme. A design example verifies its effectiveness.  相似文献   

4.
ABSTRACT

Two state/fault estimation methods using terminal sliding mode (TSM) concepts are presented in this paper. In contrast with conventional sliding modes, which guarantee asymptotic convergence of non-output estimation errors and faults, TSMs enable finite time convergence of estimation errors for faults and all the states. The minimum-phase condition, as a common condition required for fault estimation, is released in the proposed methods. Method I implements fractional power of the so-called switching term to make it robust against matched faults and disturbances. Compared with previous terminal scheme, this method covers a wider class of systems. In Method II, fractional power sliding variable is considered to achieve finite time convergence of estimation errors and their derivatives. In contrast with Method I, this approach is also robust against unmatched faults. Finally, the methods are applied to an unstable aircraft model.  相似文献   

5.
In this article, we address the problem of fault reconstruction in delayed systems by introducing a time‐shifted sliding mode observer (SMO). While time‐varying delays of arbitrary duration are considered in the measured output signal, the actuator fault is parametrized as a weighted sum of known regressor functions with unknown coefficients. The prediction scheme utilizes the variation of constants formula to obtain the present time estimate of the unmeasured state. The fault is also identified at present time by means of the continuous‐time Least Squares approaches. Ideal sliding mode can be guaranteed in theory, even in the presence of such adverse delays, since there is no chattering in the output estimation error of the SMO. An application to petroleum engineering with numerical simulations is presented to show the effectiveness of the proposed method.  相似文献   

6.
自适应广义滑模观测器之状态估计和故障重构   总被引:1,自引:0,他引:1  
针对一类同时具有执行机构故障和输出扰动的不确定性系统,提出了一种自适应广义滑模观测器,实现系统状态的估计和执行机构故障的重构.首先,进行系统变换及状态增广构成一类奇异系统,使得执行机构故障和输出扰动解耦,且输出扰动成为增广系统的状态之一;随后,受未知输入观测器和滑模观测器的启发,设计了一种广义滑模观测器,放宽了传统方法对输出维数的严格约束,并通过融入自适应技术放宽了对故障和不确定性上界已知的要求;最后,利用等效误差注入的思想实现故障重构.针对可重复使用运载器再入段进行的仿真实例,验证了所提方法的有效性.  相似文献   

7.
This paper presents a functional observer scheme using two sliding mode observers in cascade. A coordinate transformation is performed on the system such that existing sliding mode observer theory can be directly applied to achieve functional state estimation. The necessary and sufficient existence conditions for the scheme (in terms of the original system matrices) are also investigated, and they are found to be less stringent than earlier work on functional state estimation using one sliding mode observer; this could have benefits in terms of cost and simplicity. A numerical example verifies the effectiveness of the scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers fault detection and estimation issues for a class of nonlinear systems with uncertainty, using an equivalent output error injection approach. A particular design of sliding mode observer is presented for which the parameters can be obtained using LMI techniques. A fault estimation approach is presented to estimate the fault and the estimation error is dependent on the bounds on the uncertainty. For a special class of uncertainty, a fault reconstruction scheme is presented where the reconstructed signal can approximate the fault signal to any accuracy. The proposed fault estimation/reconstruction signals are only based on the available plant input/ouput information and can be calculated on-line. Finally, a simulation study on a robotic arm system is presented to show the effectiveness of the scheme.  相似文献   

9.
This paper investigates the fault-tolerant control problem for a dual-redundant hydraulic actuation system on active/active (A/A) mode subject to servovalve leakage and disturbances. The change in system dynamics caused by servovalve leakage is modeled as an additive time-varying fault. Then, an enhanced iterative learning observer with improved robustness against abrupt unknown input is designed for fault reconstruction. In view of the high relative degree of the plant, an auxiliary variable is adopted to facilitate the controller design. Combined with the fault reconstruction results, an adaptive continuous nonsingular fast terminal sliding mode (NFTSM) fault-tolerant controller is developed, in which an NFTSM manifold is constructed based on the auxiliary variable to achieve fast convergence of trajectory tracking errors. An adaptive continuous reaching law with less chattering is designed to compensate for the influence of the lumped disturbance. Lyapunov stability analysis demonstrates that this method can ensure finite-time convergence of sliding variable and can guarantee the trajectory tracking errors converge to the neighborhood of the origin exponentially. Finally, the effectiveness of the proposed method is verified through a comparative simulation study.  相似文献   

10.

针对一类不确定非线性系统, 基于滑模观测器研究执行器和传感器同时故障时的鲁棒重构问题. 引入线性变换矩阵并添加后置滤波器构建增维系统, 综合?? 控制将鲁棒滑模观测器增益矩阵设计方法, 转化为LMI 约束下的多目标凸优化问题. 在滑模增益中添加了自适应律, 确保状态估计误差渐近稳定, 同时滑模运动经有限时间到达滑模面, 在此基础上给出执行器和传感器故障同时重构算法. 最后通过数值算例表明了所提出方法的有效性.

  相似文献   

11.
Multiple sliding mode observers for state and unknown input estimations of a class of MIMO nonlinear systems are systematically developed in this paper. A new nonlinear transformation is formulated to divide the original system into two interconnected subsystems. The unknown inputs are assumed to be bounded and not necessarily Lipschitz, and do not require any matching condition. Under structural assumptions for the unknown input distribution matrix, the sliding mode terms of the nonlinear observer are designed to track their respective unknown inputs. Also, the unknown inputs can be reconstructed from the multiple sliding mode structurally. The conditions for asymptotic stability of estimation error dynamics are derived. Finally, simulation results are given to demonstrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
本文针对受多源干扰和舵面故障影响的飞翼无人机系统姿态跟踪控制问题进行研究, 提出了一种基于高阶滑模观测器的复合连续非奇异终端滑模主动抗干扰容错控制算法, 在实现姿态跟踪误差有限时间收敛的同时, 保证了控制量的连续. 并且针对控制力矩的具体实现问题, 结合飞翼无人机气动舵面冗余特性, 给出了基于加权伪逆算法的舵面分配方案, 该方案在满足舵面约束的情况下, 保证了舵面偏转角度的最优. 仿真结果表明, 所提控制方案显著提升了飞翼无人机姿态跟踪精度和跟踪误差的收敛速度, 并且保证了所有舵面满足偏角约束.  相似文献   

13.
In this paper, a terminal sliding mode observer (TSMO) for systems with general state‐space representation is proposed. The effects of uncertainties and matched disturbances are incorporated in the system dynamics. Compared to conventional sliding mode observers, which are capable of finite time convergence of the measured states’ (outputs) errors and asymptotic convergence of unmeasured states’ errors, the proposed TSMO guarantees finite time convergence of all states. Three appropriate Lyapunov functions are defined for proving robust and finite time convergence of all state estimation errors of the TSMO. In addition, to highlight the effectiveness of the methodology, the developed TSMO is applied to a well‐known realistic wind turbine model. Results confirm that the proposed TSMO estimates all the states in finite time with good accuracy.  相似文献   

14.
In this paper, a fault estimation and fault-tolerant control problem for a class of T-S fuzzy stochastic time-delay systems with actuator and sensor faults is investigated. A novel sliding mode observer is proposed, which can simultaneously estimate the system states, actuator and sensor faults with good accuracy. Based on the state and actuator fault estimation, a new sliding mode control scheme is developed, which can effectively eliminate the influence of actuator fault. Sufficient conditions for the existence of the proposed observer and fault-tolerant sliding mode controller are provided in terms of linear matrix inequality, and moreover, the reachability of the sliding mode surface can be guaranteed under the proposed control scheme. The propose sliding mode observer and fault-tolerant sliding mode controller can overcome the restrictive assumption that the input matrix of all local modes is the same. Finally, a numerical example is provided to verify the effectiveness of the proposed sliding mode observer and fault-tolerant sliding mode control technique.  相似文献   

15.
This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using two sliding mode observers in cascade. Measurable signals from the first observer are found to be the output of a fictitious system that is driven by the fault and disturbances. Then the signals are fed into a second observer which will reconstruct the fault. Sufficient conditions which guarantee DDFR are investigated and presented in terms of the original system matrices, and they are found to be less conservative than if only one single observer is used; therefore DDFR can be achieved for a wider class of systems using two sliding mode observers. A simulation example validates the claims made in this paper.  相似文献   

16.
针对非线性系统的执行器故障及传感器故障,提出一种鲁棒多故障检测方法.首先,对可能发生的每种执行器故障分别构造模型,并设计相应的滑模观测器用于残差生成,从而实现执行器故障检测.然后,设计一种算法,利用简单滤波器将传感器故障转换为执行器故障,从而直接利用执行器故障检测的方法实现传感器故障的检测,将执行器故障的检测方法推广到执行器、传感器故障同时存在的情况.最后,通过在单关节机械手中的仿真应用验证了所提方法的有效性.  相似文献   

17.
基于滑模观测器的车辆电子稳定性控制系统故障重构   总被引:1,自引:0,他引:1  
针对车辆电子稳定性控制系统的横摆角速度传感器和侧向加速度传感器故障检测和重构问题,使用T-S模糊系统建立了车辆动力学系统的全局模型,依据滑模控制理论,给出了基于滑模观测器的传感器故障检测和重构方法,且所设计观测器满足给定的从未知输入到故障重构误差的L2增益性能要求.最后通过实测数据,验证了方法是可行的.  相似文献   

18.
针对多电机卷绕系统故障检测和隔离问题,提出了基于滑模观测器的鲁棒故障检测和隔离策略.首先,考虑到多电机卷绕系统运行环境变化引起的摩擦系数、杨式模量、半径和转动惯量等参数的不确定性,通过引入非线性未知输入干扰对系统不确定参数进行描述,将多电机卷绕系统转化为包含执行器故障的一般不确定非线性系统;其次,构造鲁棒滑模观测器并用作故障检测观测器,通过滑模控制来抑制未知输入干扰,使观测器具有鲁棒性,在此基础上,结合多观测器故障隔离的思想,提出了可以同时对多个执行器故障进行检测和隔离的方法;然后,根据李雅普诺夫理论得到使观测器系统指数收敛的充分条件,同时给出了观测器增益的求解方法;最后,仿真结果验证了所提方法的鲁棒性和有效性.  相似文献   

19.
In this paper, a new framework for the synthesis of a class of sliding mode observers for affine linear parameter varying (LPV) systems is proposed. The sliding mode observer is synthesized by selecting the design freedom via linear matrix inequalities ( LMIs ). Posing the problem from a small gain perspective allows existing numerical techniques from the literature to be used for the purpose of synthesizing the observer gains. In particular, the framework allows affine parameter‐dependent Lyapunov functions to be considered for analyzing the stability of the state estimation error dynamics, to help reduce design conservatism. Initially a variable structure observer formulation is proposed, but by imposing further constraints on the LMIs, a stable sliding mode is introduced, which can force and maintain the output estimation error to be zero in finite time. The efficacy of the scheme is demonstrated using an LPV model of the short period dynamics of an aircraft and demonstrates simultaneous asymptotic estimation of the states and disturbances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号