首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ken-Yen Liu  Kuo-Chuan Ho 《Polymer》2011,52(15):3318-3324
Crosslinkable ruthenium complex dye, Ru(2,2′-bipyridine-4,4′-bicarboxylic acid)(4,4′-bis((4-vinyl benzyloxy)methyl)-2,2′-bipyridine)(NCS)2 (denoted as Ru-S dye), was synthesized and characterized using 1H-NMR, 13C-NMR, Fourier transform infrared (FTIR) and UV/vis spectroscopies.The power conversion efficiency of dye-sentitized solar cell (DSSC) using Ru-S and liquid electrolyte containing lithium iodide (LiI) reached 7.53% under standard global AM 1.5 full sunlight, which is partly attributed to Li+ being coordinated by Ru-S as verified by ATR-FTIR spectroscopy. As Ru-S was further crosslinked with glycerol propoxylate triacrylate (GPTA), not only 89% of dye retained on TiO2 mesoporous surface after rinsed by 0.1 N NaOH aqueous solution, the power efficiency was also increased to 7.88%. As poly(methyl acrylate) was used to gel the electrolyte system, the power efficiency of DSSC with Ru-S dye was 6.96% but increased to 7.57% after crosslinking with GPTA. Notably, both DSSCs showed a good long-term stability after one month storage.  相似文献   

2.
In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods was about 2.5 and 4, respectively. The results of ultraviolet–visible absorption spectra show that the absorption wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods, respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes, resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold nanoparticles and short gold nanorods.  相似文献   

3.
Niobium (Nb) and iron (Fe) co-doped titanium oxide nanobelts were prepared in a one-pot alkaline hydrothermal process followed by calcination treatment, and evaluated in TiO2 nanoparticle-based composite anodes for dye-sensitized solar cells. Addition of Nb and Fe species caused an increase in donor density and trap-mediated charge transition, as characterized by electrochemical and photoluminescence analyses. Under illumination with simulated solar light, the co-doped single-crystalline nanobelts promoted photocurrent yield and open-circuit voltage, because they facilitate electronic conduction and chemical capacitance in the composite anodes. This improved photovoltaic performance is associated with the enhanced charge collection efficiency, mechanistically attributed to rapid electron transport and prolonged electron lifetime via shallow trapping sites. Results demonstrate that the Nb and Fe co-doped titania nanobelts are effective to provide longer electron diffusion lengths and favor charge accumulation during cell operation.  相似文献   

4.
Titania (TiO2) nanoparticles have been synthesized using organic precursor technique. The titania nanoparticles were characterized. The results indicated that the prepared titanium oxalate and citrate precursors were transformed to anatase TiO2 phase at temperature 400 °C for 2 h. Dye-sensitized solar cells were assembled using the prepared nanocrystalline TiO2 with large surface area. The specific surface area SBET was 80.9 and 78.6 m2/g using oxalic and citric acids, respectively. The power efficiency was 3.5 and 2.4%. A brief discussion on the possible reasons behind the low power conversion efficiency observed for these type of solar cells was reported.  相似文献   

5.
The nano-hollow spherical ZnO (NHS ZnO) photoelectrodes were prepared using functionalized polystyrene nanoparticles with flexible dimensional control of the particle diameter for dye-sensitized solar cells applications. NHS ZnO was formed by ZnO nanoparticles that accumulated on the surface of functionalized polystyrene with a high ionic strength. This method represents a one-step preparation method for an inorganic shell via polymerization between ZnO complexes. Even though NHS ZnO has a submicron size, it composed of nanoparticles that connect with each other, thereby implying good electron transfer properties, and has a high surface area. The submicron-sized diameter NHS ZnO has an enhanced light scattering capacity, which promotes the photons with more opportunities to be absorbed by the N719 dye molecules. Therefore, the ZnO films prepared from 600 nm to 1000 nm NHS ZnO possessed higher IPCE values over a wide range (from 400 nm to 750 nm) compared to films of the 300 nm ZnO due to the enhanced light scattering capacities of the film. In photocurrent-voltage measurements, the short-circuit current density of 300 nm and 600 nm NHS ZnO increases from 3.33 mA/cm2 to 6.53 mA/cm2 while the cell efficiency increases from 1.04% to 3.02% due to the light scattering efficiency. Electrochemical impedance spectroscopy showed that electrons in NHS ZnO with a larger particle size have a longer electron lifetime than NHS ZnO with a smaller particle size, as the latter hinders the electron transport in the NHS ZnO nanostructured films.  相似文献   

6.
This study describes a systematic approach of TiO2/carbon black nanoparticles with respect to the loading amount in order to optimize the catalytic ability of triiodide reduction for dye-sensitized solar cells. In particular, the cell using an optimized TiO2 and carbon black electrode presents an energy conversion efficiency of 7.4% with a 5:1 ratio of a 40-nm TiO2 to carbon black. Based on the electrochemical analysis, the charge-transfer resistance of the carbon counter electrode changed based on the carbon black powder content. Electrochemical impedance spectroscopy and cyclic voltammetry study show lower resistance compared to the Pt counter electrode. The obtained nanostructures and photo electrochemical study were characterized.  相似文献   

7.
Core-shell electrodes based on TiO2 covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO2 electrodes were prepared from TiO2 powder (P25 Degussa) and coated with thin layers of Al2O3, MgO, Nb2O5, and SrTiO3 prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO2 electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO2/MgO core-shell electrodes: fill factor of ∼0.60, short-circuit current density Jsc of 12 mA cm−2, open-circuit voltage Voc of 0.78 V and overall energy conversion efficiency of ∼5% (under illumination of 100 mW cm−2).  相似文献   

8.
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.  相似文献   

9.
In this work, the morphology of ZnO materials could be controlled by changing the capping agent at constant alkali solution in hydrothermal process. ZnO nanomaterials with the structure of flowers, sheet-spheres and plates were obtained with the capping agent of ammonia, citric acid and oxalic acid, respectively. Thus prepared ZnO nanomaterials were characterized and applied as the photo-anode materials for dye-sensitized solar cell. All synthesized ZnO nanomaterials possessed high crystalline wurtzite structures grown in the (0 0 1) direction with the size of 2-4 μm, which consist of ZnO units around 20-400 nm. Among them, Sheet-sphere ZnO showed the highest crystallinity, surface area and uniform film morphology, resulting in the significantly improved PV performance with the overall conversion efficiency of 2.61% in dye-sensitized solar cell (DSSC) fabricated with sheet-sphere ZnO. It is notable that the ZnO materials with sphere structure may be the optimal photo-anode material among various ZnO nanomaterials for DSSC.  相似文献   

10.
In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells.  相似文献   

11.
Imidazolium iodides (Im+Is) were synthesized with different substituents of the cation and used as electrolytes in dye-sensitized solar cells (DSSCs), and the effects of such substituents were investigated in terms of the photovoltaic performance of the cells. Synthesized iodides were verified by 1H-NMR. Among the iodides, 1,3-diethylimidazolium iodide enabled a solar energy conversion efficiency of 4.8% for its DSSC, while 1-(4-acetophenyl)-3-ethylimidazolium iodide rendered an efficiency of 3.1% for its cell. In all cases the short-circuit photocurrent (J sc) was found to increase with decrease in size of the substituent, which was also verified to be valid in the case of a quasi-solid state DSSC. Results are explained by the electrostatic interactions between solvated Im+ and negatively charged species based on the correlation between diffusion coefficients of I and I3 and J sc values. These explanations are supported by steady-state voltammetry and electrochemical impedance spectroscopy (EIS).  相似文献   

12.
Electrochemical impedance spectroscopy (EIS) was used to understand the electrochemical mechanisms which appear in dye-sensitized solar cells (DSSCs). This qualitative and quantitative technique permits identification of the phenomena proceeding within the different elements composing the cell and at their interfaces.In this study, the classical conducting glass substrate was replaced by a protected stainless steel (304 type) substrate as the counter-electrode (cathode) in dye-sensitized solar cells. Platinum was deposited at the substrate surface to optimize the charge transfer resistance of the electrode.After a few days of immersion in the electrolytic solution, stainless steel substrates coated with low thickness of Pt show pitting corrosion due to iodine. Defects in the Pt layer such as discontinuity of the film and micro-cracks may explain the corrosion of the stainless steel substrate. However the Pt layer degradation is retarded for thicker films. On the other hand, polished substrates show a better behaviour probably due to the elimination of the defects on the stainless steel surface.Electrolytic solution was optimized. For this, components such as 1-butyl-3-methylimidazolium iodide (BMII), guanidine thiocyanate (GT) and 4-tert-butylpyridine (TBP) were added. No corrosion phenomena on stainless steel 304 appeared within 3 days when TBP was added. This means that TBP acts as a corrosion inhibitor.A schematic equivalent circuit is also proposed.  相似文献   

13.
In this study, dye-sensitized solar cells (DSSCs) were fabricated using nanocrystalline titanium dioxide (TiO2) nanoparticles as photoanode. Photoanode thin films were prepared by doctor blading method with 420 kg/cm2 of mechanical compression process and heat treatment in the air at 500°C for 30 min. The optimal thickness of the TiO2 NP photoanode is 26.6 μm with an efficiency of 9.01% under AM 1.5G illumination at 100 mW/cm2. The efficiency is around two times higher than that of conventional DSSCs with an uncompressed photoanode. The open-circuit voltage of DSSCs decreases as the thickness increases. One DSSC (sample D) has the highest conversion efficiency while it has the maximum short-circuit current density. The results indicate that the short-circuit current density is a compromise between two conflict factors: enlargement of the surface area by increasing photoanode thickness and extension of the electron diffusion length to the electrode as the thickness increases.  相似文献   

14.
An acetylene-linked porphyrin-perylene anhydride and an acetylene-linked porphyrin-naphthalic anhydride have been synthesized; the highly conjugated acetylenic bridge in these porpyrins efficiently mediates electronic interaction between the porphyrin and perylene units to extend the π-conjugation of the porphyrin dye and to cause both broadening and red shifts of both the Soret and Q absorption bands. This condition is a useful feature for efficient dye-sensitized solar cell applications. The optical, electrochemical and photovoltaic properties of the new linked anhydrides show that the HOMO-LUMO gap decreased upon extension of π-conjugation, indicating a strong electronic coupling between the porphyrin and the perylene or naphthalene unit.  相似文献   

15.
Novel carbon nanotubes (CNTs)-polyethylene oxide (PEO) composite electrolyte for dye-sensitized solar cell (DSSC) was prepared and characterized for the first time. The strong bonding and interaction between CNTs and PEO in CNTs-PEO composites was observed by the characterization of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectra. The introduction of CNTs into PEO matrix significantly improved the electrolyte properties of DSSC such as roughness, amorphicity and ionic conductivity. The solid-state DSSC fabricated with the optimum composite electrolyte (added 1% CNTs in PEO matrix, 1%CNT-PEO) achieved maximum conversion efficiency of 3.5%, an open circuit voltage (VOC) of 0.589 V, short circuit current density (JSC) of 10.64 mA/cm2 and fill factor (FF) of 56%. The highest IPCE in the DSSC fabricated with 1%CNT-PEO electrolyte is ascribed to the improved ionic conductivity of composite electrolytes and enhanced interfacial contact between electrode and electrolyte.  相似文献   

16.
Zn-doped TiO2 microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO2 are significantly better, compared to that of a cell based on undoped TiO2. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.  相似文献   

17.
A novel high-performance counter electrode for dye-sensitized solar cells   总被引:4,自引:0,他引:4  
A novel Pt counter electrode for dye-sensitized solar cells (DSC) was prepared by thermal decomposition of H2PtCl6 on NiP-plated glass substrate. The charge-transfer kinetic properties of the platinized NiP-plated glass electrode (Pt/NiP electrode) for triiodide reduction were studied by electrochemical impedance spectroscopy. Pt/NiP electrode has the advantage over the platinized FTO conducting glass electrode (Pt/FTO electrode) in increasing the light reflectance and reducing the sheet resistance leading to improve the light harvest efficiency and the fill factor of the dye-sensitized solar cells effectively. The photon-to-current efficiency and the overall conversion efficiency of DSC using Pt/NiP counter electrode is increased by 20% and 33%, respectively, compared to that of using Pt/FTO counter electrode. Examination of the anodic dissolution and the long-term test on the variation of charge-transfer resistance indicates the good stability of the Pt/NiP electrode in the electrolyte containing iodide/triiodide.  相似文献   

18.
Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs.  相似文献   

19.
A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.  相似文献   

20.
Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO)0.8-co-(PO)0.2]yI) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH3O[(EO)0.8-co-(PO)0.2]xI) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 °C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 × 10−4 S cm−1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 °C was 1.8%, and its decomposition temperature was 287 °C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm−2). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号