首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an adaptive integral sliding mode control (ISMC) scheme is developed for a class of uncertain multi‐input and multi‐output nonlinear systems with unknown external disturbance, system uncertainty, and dead‐zone. The research is motivated by the fact that the ISMC scheme against unknown external disturbance and system uncertainty is very important for multi‐input and multi‐output nonlinear systems. The system uncertainty, the unknown external disturbance, and the effect of dead‐zone are integrated as a compounded disturbance, which is well estimated using a sliding mode disturbance observer (SMDO). Then, the adaptive ISMC based on the designed SMDO is presented to guarantee the satisfactory tracking performance in the presence of system uncertainty, external disturbance, and dead‐zone. Finally, the designed adaptive ISMC strategy based on SMDO is applied to the attitude control of the near space vehicle, and simulation results are presented to illustrate the effectiveness of the proposed adaptive ISMC scheme using the SMDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Antidisturbance control and estimation problem are introduced for a class of nonlinear system subject to multisource disturbances. The uncertain multisource disturbances consist of not only a single harmonic or constant disturbance but also another unexpected nonlinear signal described as a nonlinear function. The composite adaptive disturbance observers are constructed separately from the controller design to estimate the disturbance with partial known information. By integrating disturbance observer‐based controller with robust adaptive control, a novel type of composite adaptive disturbance observer‐based control scheme is presented for a class of nonlinear system with multisource disturbances. Simulations for a flight control system are given to demonstrate the effectiveness of the results compared with the previous schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
文章针对直接驱动交流直线伺服系统低速时存在的推力波动问题,提出了一种滑模控制方案。通过一种新型的神经网络负载推力观测器和扰动前馈补偿的设计,理论分析表明可有效地削弱推力波动及滑模控制产生的抖振。仿真结果证明该方案不但解决了永磁直线同步机的推力波动问题,而且对系统参数变化和负载扰动具有很强的鲁棒性。  相似文献   

4.
This paper studies an observer‐based adaptive fuzzy control problem for stochastic nonlinear systems in nonstrict‐feedback form. The unknown backlash‐like hysteresis is considered in the systems. In the design process, the unknown nonlinearities and unavailable state variables are tackled by introducing the fuzzy logic systems and constructing a fuzzy observer, respectively. By using adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy control algorithm is developed. For the closed‐loop system, the proposed controller can guarantee all the signals are 4‐moment semiglobally uniformly ultimately bounded. Finally, simulation results further show the effectiveness of the presented control scheme.  相似文献   

5.
In this paper an adaptive controller–observer temperature control scheme is developed for a class of irreversible non‐chain reactions taking place in batch reactors. The scheme is based on a nonlinear observer for the estimation of the heat released by the reaction, where the heat transfer coefficient is adaptively estimated. Tracking of the desired reactor temperature is achieved via a two‐loop control scheme, where an independent adaptive estimate of the heat transfer coefficient is used as well. Remarkably, the observer and the controller can be designed and tuned separately. The convergence of both the nonlinear observer and of the overall controller–observer scheme is analyzed by resorting to a Lyapunov‐like argument. A comparative simulation case study is developed to test the performance of the proposed scheme and compare it with other approaches already known in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a speed estimation and control scheme of an induction motor drive based on an indirect field‐oriented control is presented. On one hand, a rotor speed estimator based on an artificial neural network is proposed, and on the other hand, a control strategy based on the sliding‐mode controller type is proposed. The stability analysis of the presented control scheme under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. Finally, simulated results show that the presented controller with the proposed observer provides high‐performance dynamic characteristics and that this scheme is robust with respect to plant parameter variations and external load disturbances. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
针对电动汽车内置式永磁同步电机(IPMSM)的宽速域鲁棒抗扰转速跟踪问题,提出了一种高性能IPMSM非线性控制技术。其中采用最大转矩电流比(MTPA)方案和弱磁方案实现了IPMSM的宽速域运行,并通过泰勒展开对算法进行了化简。考虑消除虚拟控制器的微分噪声,引入二阶滑模微分器对其导数进行了估计,并设计了误差补偿信号。此外,为了提高系统在宽速域运行下的抗干扰能力,设计了一种扰动观测器估计负载转矩,对控制器进行了前馈补偿,并结合积分滑模控制(SMC)增强了系统的鲁棒性。最后,通过李雅普诺夫稳定性判据证明了系统的稳定性。基于FPGA搭建了IPMSM硬件在环(HIL)平台,验证了本文设计的控制器具有优异的抗干扰能力和鲁棒性。  相似文献   

8.
In this paper, a fractional‐order Dadras‐Momeni chaotic system in a class of three‐dimensional autonomous differential equations has been considered. Later, a design technique of adaptive sliding mode disturbance‐observer for synchronization of a fractional‐order Dadras‐Momeni chaotic system with time‐varying disturbances is presented. Applying the Lyapunov stability theory, the suggested control technique fulfils that the states of the fractional‐order master and slave chaotic systems are synchronized hastily. While the upper bounds of disturbances are unknown, an adaptive regulation scheme is advised to estimate them. The recommended disturbance‐observer realizes the convergence of the disturbance approximation error to the origin. Finally, simulation results are presented in one example to demonstrate the efficiency of the offered scheme on the fractional‐order Dadras‐Momeni chaotic system in the existence of external disturbances.  相似文献   

9.
Direct drives with linear motors have been recently attracting the attention of both industry and academia. The main peculiarity of these systems is the lack of mechanical reduction and transmission devices, which makes the influence of some uncertain electromechanical phenomena (e.g., friction, cogging forces, etc.) and load disturbances much more significant than in the case of conventional rotary actuators. This paper describes a control system for a tubular synchronous linear motor based on a sliding-mode control (SMC) and a proportional-integral (PI)-based equivalent disturbance observer. The distinctive peculiarities of the proposed scheme are the use of a control law that guarantees the stability of the system regardless of the payload mass, the adoption of a double boundary layer addressing effectively the harmful effects of static friction, and the introduction of a simple PI-based equivalent disturbance observer that avoids steady-state errors regardless of model uncertainties and external disturbances. The reduced computational cost of the control law, alongside with the introduction of the effective design criteria for the SMC and the disturbance observer, makes the implementation of the proposed approach as simple as standard cascaded linear control schemes using industrial microcontrollers. The aforementioned considerations are validated by extensive experiments.  相似文献   

10.
The speed control ability of dc servomotors is affected by parameter variations and disturbance torque. In this paper, a robust speed control method for dc servomotors with a disturbance torque observer and a feedback controller is proposed. The disturbance torque observer is used for the compensation of parameter variations and disturbance. The feedback gain is adjusted in the aspect of stability by an adaptive gain law based on Lyapunov's direct method and is used to restrain the influence of estimation error for the disturbance observer. A robust current control scheme for a voltage source PWM inverter with disturbance observer is also presented, since current control ability affects the control performance of dc servomotors. The validity of this control scheme is verified by numerical simulations and experiments. © 1999 Scripta Technica, Electr Eng Jpn, 126(3): 30–40, 1999  相似文献   

11.
针对阀控电液回转系统在围岩钻进过程中, 由于的参数不确定、未知负载以及外部扰动等非线性因素影响难以精确控制输出轴转速的问题, 设计了基于RBFNN扰动观测器的MFA-SM控制方案. 首先, 通过改进的动态线性化方法将电液系统等价线性化为仅与系统I/O数据相关的增量模型, 而未知负载及外部扰动则被合并为一个未知非线性时变项; 然后, 设计了RBFNN扰动观测器对该非线性项进行在线实时估计, 并根据系统的I/O数据来估计系统时变伪梯度参数;最后, 给出了相应的控制器设计。 仿真实验结果表明, 所设计的MFA-SM控制器能够对未知负载及外部干扰进行有效补偿, 相较于其他方法,该方案使得系统调节时间缩短了约10至15s, 最大超调量降低了7.4%左右, 且转速跟踪误差能够收敛到零。  相似文献   

12.
It is desirable for a container crane to operate smoothly and quickly. For this purpose, the control system of a container crane should be capable of antisway control for suppressing vibrations. A vision sensor system is often used to detect the sway angle. However, since a control system with a vision sensor has a delay time when determining the angle, it sometimes leads to deterioration of control performance owing to the delay time. In order to overcome this problem, this paper proposes a new antisway crane control system based on a dual‐state observer with sensor‐delay correction. However, because of nonlinear friction in the crane, the estimation accuracy achieved by using the observer is poor. To overcome this problem, this paper proposes a disturbance observer considering friction disturbance. The control performance and e?ectiveness of the proposed robust control system based on the estimated information are shown to be satisfactory by experimental results. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 184(3): 36–46, 2013; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.22412  相似文献   

13.
This paper proposes a neural network (NN)‐based adaptive control of piezoelectric actuators with unknown hysteresis. Based on the classical Duhem model described by a differential equation, the explicit solution to the equation is explored and a new hysteresis model is constructed as a linear model in series with a piecewise continuous nonlinear function. An NN‐based dynamic pre‐inversion compensator is designed to cancel out the effect of the hysteresis. With the incorporation of the pre‐inversion compensator, an adaptive control scheme is proposed to have the position of the piezoelectric actuator track the desired trajectory. This paper has three distinct features. First, it applies the NN to online approximate complicated piecewise continuous unknown nonlinear functions in the explicit solution to Duhem model. Second, an observer is designed to estimate the output of hysteresis of piezoelectric actuator based on the system input and output. Third, the stability of the controlled piezoelectric actuator with the observer is guaranteed. Simulation results for a practical system validate the effectiveness of the proposed method in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents an adaptive output feedback stabilization method based on neural networks (NNs) for nonlinear non‐minimum phase systems. The proposed controller comprises a linear, a neuro‐adaptive, and an adaptive robustifying parts. The NN is designed to approximate the matched uncertainties of the system. The inputs of the NN are the tapped delays of the system input–output signals. In addition, an appropriate reference signal is proposed to compensate the unmatched uncertainties inherent in the internal system dynamics. The adaptation laws for the NN weights and adaptive gains are obtained using Lyapunov's direct method. These adaptation laws employ a linear observer of system dynamics that is realizable. The ultimate boundedness of the error signals are analytically shown using Lyapunov's method. The effectiveness of the proposed scheme is shown by applying to a translation oscillator rotational actuator model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
自抗扰控制器解决感应电机调速系统参数鲁棒性问题   总被引:2,自引:1,他引:1  
针对矢量控制系统存在的参数鲁棒性差的缺陷,基于自抗扰控制原理,提出了一种可以取代经典PID控制器用于异步电机调速的非线性自抗扰控制器。利用扩张状态观测器,自抗扰控制器可以估计出系统状态变量及其广义导数,从而实现异步电机的精确解耦。此外,上述控制方案不需要精确电机参数就可以实现干扰补偿,这使得自抗扰控制器的设计能够独立于异步电机的精确数学模型。仿真和实验结果表明,相对于经典PID控制器,自抗扰控制器在较宽的调速范围内具有更好的动态性能。  相似文献   

16.
In this paper, an observer‐based fault detection (FD) method is presented for a class of nonlinear networked control systems (NCSs) with Markov transfer delays. Firstly, based on Euler approximate method, a nonlinear NCS model with uncertainty is proposed using the Takagi‐Sugeno (T‐S) fuzzy model. Some geometric conditions are given to transfer the NCS model into an output‐feedback form. Then, the H FD observer is designed such that the estimation error (residual) converges to zero, if there exist no fault and uncertainty in the system, or the residual is minimized in the sense of H norm, when system contains fault and uncertainties. Furthermore, to simplify the model, the approximate model without uncertainty is considered. Then, sufficient conditions for the existence of FD observer gain and the sampling time of NCSs are given to achieve the semiglobal practical property. An inverted pendulum example is used to illustrate the efficiency of the developed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
To enhance the convergent rate and robustness of buck‐type DC‐DC converter system, a new finite‐time voltage regulation control algorithm is proposed in this paper. First, an average state space‐based model is analyzed, which considers both the parameters uncertainties and the variations of load and input voltage. By using saturation finite‐time control theory, at the first step, in the absence of disturbance, a new fast voltage regulation control algorithm is designed, which can guarantee that the output voltage converges to the reference voltage in a finite time. Because the saturation constraint is considered during the controller design, the duty ratio function of the converter satisfies the constraint between 0 and 1. Second, in the presence of disturbance, a finite‐time convergent disturbance observer is designed to estimate the unknown disturbances in a finite time. Finally, a disturbance observer‐based finite‐time voltage regulation control algorithm is developed. Compared with PI (Proportional‐Integral) control algorithm, circuit simulations show that the proposed algorithm has a faster regulation performance and stronger robustness performance on disturbance rejection.  相似文献   

18.
A kind of launching platform driven by two permanent magnet synchronous motors which is used to launch kinetic load to hit the target always faces strong parameter uncertainties and strong external disturbance such as the air current impulsion which would degrade their tracking accuracy greatly. In this paper, a practical method which combines adaptive robust control with neural network‐based disturbance observer is proposed for high‐accuracy motion control of the launching platform. The proposed controller not only accounts for the parametric uncertainties but also takes the external disturbances into account. Adaptive control is designed to compensate the former, while neural network‐based disturbance observer is designed to compensate the latter respectively and both of them are integrated together via a feedforward cancellation technique. A new kind of parametric adaptation and weight adaptation strategy is designed by using the linear combination of the system's tracking error and the weight estimation error as a driving signal for parametric adaptation and disturbance approximation. The stability of the novel control scheme is analyzed via a Lyapunov method and this method presents a prescribed output tracking performance in the presence of both parameter uncertainties and unmodeled nonlinearities. Extensive comparative simulation and experimental results are obtained to verify the high‐performance of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
基于扰动观测器的无刷直流电机无位置传感器控制   总被引:14,自引:2,他引:14  
讨论了无刷直流电机无位置传感器控制 ,提出一种基于扰动观测器的无位置传感器控制方案。无刷直流电机电势平衡方程的非线性由反电势所引起 ,如果假设反电势为常值扰动 ,就可根据线性理论设计常值扰动观测器对反电势过零点进行观测。观测结果中包含反电势过零点信息和干扰脉冲 ,后者由假设误差引起并且会影响转子位置信号。如果能够消除干扰脉冲的影响 ,就可以将反电势过零点信息分离出来 ,从而实现无位置传感器控制 ,因此本文也介绍了消除干扰脉冲的原理和方法。最后 ,就本文提出的方法进行了实验研究  相似文献   

20.
A well‐known control system which can reduce the adverse effects of disturbances is a disturbance observer. However, in many cases of mechanical systems, system disturbances which do not satisfy the matching condition may be imposed. Therefore, it may be difficult to reduce the adverse effects of the disturbances by the traditional disturbance observer. In this paper, a method of control system synthesis for disturbance rejection using a dual observer is proposed. This method is based on the zeroing induced by the disturbance localization problem. This problem may be solved by dividing the state space into observable subspace and unobservable subspace. As compared with an H controller based on perfect observation, the usefulness of the proposed control system for disturbance rejection is demonstrated by numerical simulations for a two‐mass spring system. © 2002 Scripta Technica, Electr Eng Jpn, 138(4): 50–60, 2002; DOI 10.1002/eej.1138  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号