首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxy‐based blends containing poly(ethylene oxide)‐co‐poly(propylene oxide)‐co‐poly(ethylene oxide) (PEO–PPO–PEO) block copolymers with different PEO/PPO molar ratios have been investigated in order to analyze the effect of the generated morphologies and interactions between components on the mechanical properties of the blends. Mechanical, morphological and dynamic mechanical analyses indicate that the observed increase of flexural modulus can be related to the decrease of free volume. In modified systems that remain miscible, an increase of flexural modulus, strength and fracture toughness can be observed. Also, macrophase‐ and microphase‐separated systems show an increase of fracture toughness but not of flexural modulus and strength at low contents of block copolymers. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Two series of polyurethanes were prepared to investigate the effect of comacrodiol structure on properties and morphology of polyurethanes based on the siloxane macrodiol, α,ω‐bis(6‐hydroxyethoxypropyl) polydimethylsiloxane (PDMS). All polyurethanes contained a 40 wt % hard segment derived from 4,4′‐methylenediphenyl diisocyanate (MDI) and 1,4‐butanediol (BDO), and were prepared by a two‐step, uncatalyzed bulk polymerization. The soft segments were based on an 80/20 mixture of PDMS (MW 967) and a comacrodiol (MW 700), selected from a series of polyethers and polycarbonates. The polyether series included poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(tetramethylene oxide) (PTMO), poly(hexamethylene oxide), and poly(decamethylene oxide) (PDMO), whereas the polycarbonate series included poly (hexamethylene carbonate) diol (PHCD), poly [bis(4‐hydroxybutyl)‐tetramethyldisiloxy carbonate] diol (PSCD), and poly [hexamethylene‐co‐bis(4‐hydroxybutyl)‐tetramethyldisiloxy carbonate] diol (COPD). Polyurethanes were characterized by size exclusion chromatography, tensile testing, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). The results clearly demonstrated that the structure of the comacrodiol influenced the properties and morphology of siloxane‐based polyurethanes. All comacrodiols, except PEO, improved the UTS of the polyurethane; PHMO and PTMO were the best polyether comacrodiols, while PSCD was the best polycarbonate comacrodiol. Incorporation of the comacrodiol made polyurethanes more elastomeric with low modulus, but the effect was less significant with polycarbonate comacrodiols. DSC and DMTA results strongly supported that the major morphological change associated with incorporation of a comacrodiol was the significant increase in the interfacial regions, largely through the compatibilization with the hard segment. The extent of compatibilization varied with the comacrodiol structure; hydrophilic polyethers such as PEO were the most compatible, and consequently, had poor mechanical strength. Among the polyethers, PHMO was the best, having an appropriate level of compatibility with the hard segment for substantial improvement in mechanical properties. Siloxy carbonate comacrodiol PSCD was the best among the polycarbonates. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1071–1082, 2000  相似文献   

3.
Polymerization and copolymerization of vinyl monomers such as acrylamide, acrylonitrile, vinyl acetate, and acrylic acid with a redox system of Ce(IV) and organic reducing agents containing hydroxy groups were studied. The reducing compounds were poly(ethylene glycol)s, halogen‐containing polyols, and depolymerization products of poly(ethylene terephthalate). Copolymers of poly(ethylene glycol)s‐b‐polyacrylonitrile, poly(ethylene glycol)s‐b‐poly(acrylonitrile‐co‐vinyl acetate), poly(ethylene glycol)s‐b‐polyacrylamide, poly(ethylene glycol)s‐b‐poly(acrylamide‐co‐vinyl acetate), poly(1‐chloromethyl ethylene glycol)‐bpoly(acrylonitrile‐co‐vinyl acetate), and bis[poly(ethylene glycol terephthalate)]‐b‐poly(acrylonitrile‐co‐vinyl acetate) were produced. The yield of acrylamide polymerization and the molecular weight of the copolymer increased considerably if about 4% vinyl acetate was added into the acrylamide monomer. However, the molecular weight of the copolymer was decreased when 4% vinyl acetate was added into the acrylonitrile monomer. Physical properties such as solubility, water absorption, resistance to UV light, and viscosities of the copolymers were studied and their possible uses are discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1385–1395, 1999  相似文献   

4.
Syntheses of poly(ethylene terephthalate-co-isophthalate) (PET-co-PEI) were achieved via ring-opening copolymerization of corresponding cyclic oligoesters. The ring-opening polymerization (ROP)-PET-co-PEI were prepared by equilibrating an equimolar amount of cyclic oligo(ethylene terephthalate) and cyclic oligo(ethylene isophthalate) using di-n-butyltin oxide catalyst under high concentration conditions at 270 and 290 °C for 8 and 12 h. The copolyesters were obtained in yields of up to 91% with the inherent viscosity (η inh) of up to 2.89 dl/g indicating the drastically high molecular weight compared with the conventional and ROP routes for the synthesis of PEI. The differential scanning calorimetry data of ROP-PET-co-PEI showed the melting temperatures above 400 °C indicated the potential used in high temperature application.  相似文献   

5.
The miscibility and crystallization behavior of poly(ethylene oxide) (PEO) and poly(styrene‐co‐maleic anhydride) ionomer (SMAI) blends were studied by the dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). This study has demonstrated that the presence of ion–dipole interactions enhances the miscibility of otherwise immiscible polymers in the PEO and high molecular weight poly(styrene‐co‐maleic anhydride) (SMA). The effect of ion–dipole interactions on enhancing miscibility is confirmed by the presence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of the PEO component. The equilibrium melting temperature of PEO in the blends are obtained using Hoffman‐Weeks plots. The interaction energy density, β, is calculated from these data using the Nishi‐Wang equation. The results suggest that PEO and SMAI blends are thermodynamically miscible in the melt. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1–7, 2000  相似文献   

6.
The syntheses of two linear unsaturated aromatic oligoesters, poly(hydroquinone fumarate‐co‐sebacate) (PHFS) and poly(resorcinol fumarate‐co‐sebacate) (PRFS), are described. PHFS, PRFS and poly(ethylene glycol) (PEG) are then used to prepare di‐ and tri‐block copolymers. Products thus obtained are investigated in terms of molecular weight, composition, structure and thermal properties by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and NMR and FTIR spectroscopies. A number of design parameters including the molecular weights of PHFS, PRFS and PEG and the ratios of PEG to PPFS or to PEFS are varied in order to assess their effects on product yields and properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2358–2363, 2003  相似文献   

7.
Obtaining core-sheath fibers by single-spinneret electrospinning is a recent and straightforward approach to prepare composite fibers. Fibers of more complex architecture consisting of poly(ethylene oxide) (PEO) core, inner poly(l -lactide) sheath sd and outer beeswax (BW) sheath may also be obtained using this method. In the present study we report its applicability for a large series of (bio)degradable polyesters such as poly(ε-caprolactone), poly(d ,l -lactide-co-glycolide), poly(butylene succinate), poly(3-hydroxybutyrate), and poly(l -lactide-co-d ,l -lactide). The fibers have a well-differentiated PEO core, polyester inner sheath and BW outer sheath. The possibility for targeted location of hydrophilic or hydrophobic substances in the core or in the sheaths of the PEO/polyester/BW fibers has been demonstrated using nanosized zinc oxide with unmodified (hydrophilic) or silanized (hydrophobic) surface. PEO/polyester/BW fibrous materials loaded with a model drug (5-nitro-8-hydroxyquinoline) exhibit antimicrobial activity. The obtained results show that single-spinneret electrospinning is a novel and versatile method to prepare core-double sheath composite fibers prospective for various applications such as biomedicine, cosmetics, and food packaging.  相似文献   

8.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

9.
The goal of this study was to broaden the spectrum of gas permeability and selectivity characteristics of poly(ethylene‐co‐acrylic acid) (EAA) by combining it with poly(ethylene oxide) (PEO), which has a high selectivity for CO2. To obtain films that differed substantially in their solid state morphologies, EAA was combined with PEO as melt blends and as coextruded films with many alternating, continuous microlayers of EAA and PEO. The solid state structure and thermal behavior were characterized and the permeability to O2 and CO2 was measured at 23°C. When the PEO was dispersed as small domains, the particles were too numerous for most of them to contain a heterogeneity that was sufficiently active to nucleate crystallization at the normal Tc. The rubbery, amorphous nature of the PEO domains enhanced the gas permeability of the melt blends. In contrast, the constituent polymers maintained the bulk properties in 5–20 μm‐thick microlayers. The series model accurately described the gas transport properties of microlayered films. Comparison of blends and microlayers revealed that the high CO2 selectivity of PEO was most effectively captured when the PEO phase was continuous, as in the microlayers or in the cocontinuous 50/50 (wt/wt) melt blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

10.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

11.
A well-defined amphiphilic comb-like copolymer of poly(ethylene oxide)(PEO) as main chain and polylactide (PLA) as side chain was successfully prepared via a combination of anionic polymerization and coordination-insertion ring-opening polymerization. The anionic copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out using potassium 2-(2-methoxyethoxy)ethoxide as initiator, and then ethoxyethyl groups of EEGE units of the copolymers obtained were removed by hydrolysis. Two copolymers of methoxypoly(ethylene oxide-co-glycidol) [mpoly(EO-co-Gly)] were formed with multiple hydroxyl sites (the molar ratio values of Gly to EO in copolymers: 1/10.6 and 1/5.2; Mn: 10,100 and 5,020 respectively), and them were used further to initiate the ring-opening polymerization of lactide in the presence of stannous octoate, and a well-defined comb-like copolymer of PEO as main chain and PLA as side chain was obtained. The intermediate and final products of PEO-g-PLA were characterized by GPC and NMR in detail.  相似文献   

12.
The copolymers, pyrrole‐co‐bis[1,2‐(pyrrol)ethoxy]ethane (PEE), were produced by electropolymerization in acetonitrile (containing 0.1 mol L−1 lithium perchlorate). The properties and morphology of these polymers were investigated by cyclic voltammetry, UV–vis absorption spectra and scanning electron microscopy (SEM), respectively. The results exhibit that the cyclic voltammograms and rates of electropolymerization of the prepared copolymers were significantly affected by PEE concentration in water and acetonitrile solution. Higher applied potential was required for the polymerization with decreasing the ratio of pyrrole/PEE. This was ascribed to the steric hindrance of high concentration of N‐substituted groups. The SEM images of the poly(pyrrole‐co‐PEE) and PPEE films show more compact and more smooth morphology compared with that of PPy and cyclic voltammogram of the poly(pyrrole‐co‐PEE) films, which display good electrochemical stability in the mixed solution, indicating that the modification of crosslinked structure was effective for the stabilization of the redox cycles. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
In this study, a series of aqueous polyurethane (PU) prepolymers were synthesized with 4,4‐methylene bis(isocyanatocyclohexane), poly(ethylene glycol) or polycaprolactone diol (PCL), methyl ethyl ketoxime, and dispersing centers produced by isophorone diisocyanate, N‐diethanol amine, and poly(ethylene oxide) monomethyl ether (PEO), containing different hydrophobic groups (? CH3 and ? C6H4C9H19) at the end. The thermal properties of the prepolymers and the characteristics of poly(ethylene terephthalate) (PET)‐treated fabrics were investigated. The glass‐transition temperature was the highest in the CC prepolymer containing a benzene ring (? C6H4C9H19) and a long PEO side chain, and it was the lowest in the CA prepolymer having a longer PEO side chain. The CB prepolymer containing a shorter PEO side chain did not produce a melting point of PEO, although a heat endothermic peak of the PCL crystal appeared. The melting point and enthalpy from PEO of the CA prepolymer were larger than those of the CC prepolymer. With respect to the hydrophilic finishing effects of aqueous PU prepolymers for PET fabrics, the fabric treated with the CB prepolymer had higher add‐on and washing durability than the fabrics treated with the CA prepolymer, which was followed by the CC prepolymer with the lowest, but the opposite trend was found for the hydrophilic properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) films prepared by the solvent‐cast method were investigated with electron spectroscopy for chemical analysis (ESCA). The PEO‐Ny's used were high‐crystalline PEO‐segmented poly(iminosebacoyliminohexamethylene), low‐crystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene), and the PEO contents in the bulk polymers were approximately 10 wt %. The ESCA results showed that the PEO segment was enriched on the top surfaces of all the films, and the degrees of enrichment were different. The mechanism of the PEO enrichment was examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 10–16, 2002  相似文献   

15.
A poly(ethylene oxide)‐block‐poly(dimethylamino ethyl methacrylate) block copolymer (PEO‐b‐PDMAEMA) bearing an amino moiety at the PEO chain end was synthesized by a one‐pot sequential oxyanionic polymerization of ethylene oxide (EO) and dimethylamino ethyl methacrylate (DMAEMA), followed by a coupling reaction between its PEO amino and a biotin derivative. The polymers were charac terized with 1H NMR spectroscopy and gel permeation chromatography. Activated biotin, biotin‐NHS (N‐hydroxysuccinimide), was used to synthesize biotin‐PEO‐PDMAEMA. In aqueous media, the solubility of the copolymer was temperature‐ and pH‐sensitive. The particle size of the micelle formed from functionalized block copolymers was determined by dynamic light scattering. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3552–3558, 2006  相似文献   

16.
Earlier studies have shown that poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blocks are compatible at 270 and 298 K, and that their Flory–Huggins interaction parameters have the same blending ratio dependence at both temperatures. At a much higher temperature (400 K), the behavior of PEO/PMMA blends is strikingly different as both components become incompatible, while the Flory–Huggins parameters are low. Here we investigate the effect of doping with nanoparticles on the degree of incompatibility of twelve miktoarm PEO‐b‐PMMA copolymers at 400 K. Since PEO tends to be semicrystalline and long chains aggregate easily, PEO‐rich and long‐chain copolymer blends feature the highest degree of incompatibility for all nanoparticle arrangements and present cubic phase morphologies. In addition, the largest nanoparticles can reinforce the microscopic phase separation of all PEO‐b‐PMMA copolymers. This shows that the main factor affecting the phase morphology is the size of the nanoparticles. Also, only the asymmetric Da3‐type PEO‐rich copolymers show a hexagonal cylindrical phase morphology, which illustrates the effect induced by the nanoparticles on the microscopic phase separation changes of the PEO‐b‐PMMA copolymers. These induced effects are also related to the composition and molecular architecture of the copolymers. © 2013 Society of Chemical Industry  相似文献   

17.
A serial of star‐shaped poly(ε‐caprolactone)‐b‐poly(ethylene oxide) (SPPCL‐b‐PEO) block copolymers with porphyrin core were successfully synthesized from ring‐opening polymerization (ROP) of ε‐caprolactone (CL) initiated with porphyrin core, followed by coupling reaction with a hydrophilic polymer poly(ethylene oxide) (PEO) shell. The structure of this novel copolymer were synthesized and thoroughly characterized by Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR). Notably, the as‐prepared porphyrin‐cored star‐shaped copolymer could self‐assembly into different structures determined by transmission electron microscopy (TEM) and dynamic lighting scattering (DLS), which provides the great potential of using this well‐defined photodynamic therapy material for drug delivery system. Particularly, the doxorubicin‐loaded SPPCL‐b‐PEO nanosphere exhibits property of pH‐induced drug release. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40996.  相似文献   

18.
A novel dual‐responsive (light and pH) particle based on poly(methacrylic acid), poly(methacrylic acid)–poly[1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate)]was prepared with the facile method of two‐step homogeneous radical polymerization with methacrylic acid as the monomer and 1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate) as a photodegradable crosslinker. Photolytic assessments were conducted upon irradiation with a UV lamp; this led to particle disintegration caused by cleavage of the photolabile crosslinking points. The light‐dependent degradation was investigated through particle size changes, absorption spectra variations, surface morphology changes, Fourier transform infrared spectroscopy, and the release of Nile red from the particles after irradiation. The pH dependence of the particle systems induced by the protonation and deprotonation of poly(methacrylic acid) was also confirmed by fluorescence spectroscopy. The triggered release of fluorescein diacetate was investigated to demonstrate that the release behavior in cells was light dependent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44003.  相似文献   

19.
The electron spin resonance (ESR) spectra of end‐group spin labelled poly(ethylene oxide) (SLPEO) using 2,2,6,6‐tetramethyl‐piperdine‐1‐oxyl nitroxide and its blends with poly(styrene‐co‐4‐vinylphenol) (STVPhs) of different hydroxyl contents were recorded over a wide temperature range. For a blend of SLPEO and pure polystyrene (PS), the ESR spectrum was composed of a single motion component, indicating that PS was immiscible with PEO. For blends composed of SLPEO and different‐hydroxyl‐content STVPhs, two spectral components with different motion rates were observed over a certain temperature range. The difference between the motion rates should be attributed to micro‐heterogeneity in the blends, with the faster rate corresponding to a nitroxide radical motion trapped in the PEO‐rich domain and the slower rate corresponding to a nitroxide radical motion trapped in the STVPh‐rich domain. Variations in the values of a number of the ESR parameters (Ta, Td and T50G) and the apparent activation energy (Ea) with hydroxyl content in the blends indicated that the miscibility of the blends increased with increasing hydrogen‐bonding density due to specific interactions between the hydroxyl groups in STVPh and the ether oxygens in PEO. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Thermal behaviour and morphology of blends of poly(ethylene oxide) (PEO) and poly(styrene-co-maleic anhydride) (SMA) prepared by the coprecipitation technique were studied by means of differential scanning calorimetry, optical microscopy and thermogravimetry. SMA containing 25wt% maleic anhydride (MA) was found to be miscible with PEO when the SMA content was greater than 80%. The melting temperature and crystallinity depended on the composition of the blend. SMA appears to segregate interlamellarly during the isothermal crystallization of PEO. The thermal stability of blends was enhanced and was higher than that of pure PEO and SMA. © of SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号