首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with theoretical problems of analysis of forced harmonic vibrations in liquid-saturated porous structures. The differential equations of motion written for the vector of the solid phase displacements and the liquid phase pressure are derived from the equations of phase component dynamics and the constitutive equations of anisotropic continuum. An example of transverse vibrations of a porous framing is used to study the influence of material constants on the dynamic characteristics of a poroelastic system. It is shown that an increase in the excitation frequency significantly increases the effect of inertial interaction between the phases of the poroelastic material, especially for the amplitudes of the liquid pressure in the pores. Thus, to obtain exact solutions of problems of poroelastic material dynamics, it is necessary to take into account all types of interaction between the solid and liquid phases of heterogenous materials.  相似文献   

2.
We have first obtained that the equations of equilibrium governing the finite radial expansion (contraction) and longitudinal shearing of a circular cylindrical shell become uncoupled for a class of harmonic materials (a class of isotropic homogeneous compressible elastic materials). Next it has been assumed that the dilatation is uniform. Following this the exact solutions of the uncoupled equations of equilibrium have been obtained for a simple harmonic material which is reduced to the Neo-Hookean material for the incompressible case. The deformation is nonhomogeneous in nature. The stresses have been obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   

4.
特征值为二重根的压电材料异材界面端奇异性   总被引:1,自引:0,他引:1  
横观各向同性压电材料的特征值的不同,其一般解的形式也不同,压电结合材料问题的求解,可以归结为寻找合适的调和函数,针对材料特征值为二重根(s1^2≠s2^2=s3^2)的情况,将变量分离形式的调和函数作特征展开,推导了横观各向同性压电材料轴对称异材界面端附近的奇民异应力场和奇异电位移场,给出院 决定奇异性的特性方程,结果表明,电位移场和应力场具有相同的奇异性,奇异性次数不仅与界面端形状以及材料的机械性质有关。也与材料的压电特性有关。  相似文献   

5.
The present paper concerns with the linear theory of micropolar thermoelasticity for materials with voids. Some basic properties of wave numbers of the longitudinal and transverse plane harmonic waves are treated. The existence theorems of non-trivial solutions and eigenfrequencies of the interior homogeneous boundary value problems of steady vibrations are proved. The connection between plane harmonic waves and eigenfrequencies of the aforementioned problems is established.  相似文献   

6.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   

7.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

8.
This paper presents the fundamental contact solutions of a magneto-electro-elastic half-space indented by a smooth and rigid half-infinite punch. The material is assumed to be transversely isotropic with the symmetric axis perpendicular to the surface of the half-space. Based on the general solutions, the generalized method of potential theory is adopted to solve the boundary value problems. The involved potentials are properly assumed and the corresponding boundary integral equations are solved by using the results in literature. Complete and exact fundamental solutions are derived case by case, in terms of elementary functions for the first time. The obtained solutions are of significance to boundary element analysis, and an important role in determining the physical properties of materials by indentation technique can be expected to play.  相似文献   

9.
The spatial problems of elasticity are mainly solved in displacements [1, 2], i.e., the Lamé equations are taken as the initial equations. This is related to the lack of general solutions for the system of basic equations of elasticity expressed in stresses. In this connection, a new variational statement of the problem in stresses was developed in [3, 4]; this statement consists in solving six generalized equations of compatibility for six independent components of the stress tensor, while the three equilibrium equations are transferred to the set of boundary conditions. This method is more convenient for the numerical solution of problems in stresses and has been tested when solving various boundary value problems. In the present paper, analyzing the completeness of the Saint-Venant identities and using the Maxwell stress functions, we obtain a new resolving system of three differential equations of strain compatibility for the three desired stress functions φ, ξ, and ψ. This system is an alternative to the three Lamé equilibrium equations for three desired displacement components u, v, w and is simpler in structure. Moreover, both of these systems of resolving equations can be solved by the new recursive-operator method [5, 6]. In contrast to well-known methods for constructing general solutions of linear differential equations and their systems, the solutions obtained by the recursive-operator method are constructed as operator-power series acting on arbitrary analytic functions of real variables (not necessarily harmonic), and the series coefficients are determined from recursive relations (matrix in the case of systems of equations). The arbitrary functions contained in the general solution can be determined directly either from the boundary conditions (the obtained system of inhomogeneous equations with a right-hand side can also be solved by the recursive-operator method [6]) or by choosing them from various classes of analytic functions (elementary, special); a complete set of particular solutions can be obtained in the same function classes, and the coefficients of linear combinations of particular solutions can be determined by the Trefftz method, the least-squares method, and the collocation method.  相似文献   

10.

This paper aims to apply a transformation method that replaces the elastic forces of the original equation of motion with a power-form elastic term. The accuracy obtained from the derived equivalent equations of motion is evaluated by studying the finite-amplitude damped, forced vibration of a vertically suspended load body supported by incompressible, homogeneous, and isotropic viscohyperelastic elastomer materials. Numerical integrations of the original equations of two oscillators described by neo-Hookean and Mooney–Rivlin viscohyperelastic elastomer material models, and their equivalent equations of motion, are compared to the frequency–amplitude steady-state solutions obtained from the harmonic balance and the averaging methods. It is shown from numerical integrations and approximate steady-state solutions that the equivalent equations predict well the original system dynamic response despite having higher system nonlinearities.

  相似文献   

11.
轴对称环形片状界面裂纹问题分析   总被引:2,自引:0,他引:2  
讨论受拉伸载荷作用的轴对称环形片状界而裂纹问题.该问题归结为求解一组超奇异积分-微分方程.方程中的未知位移间断近似表示为基本密度函数与多项式之积,其中基本密度函数考虑到问题的对称性用二维界面裂纹精确解表示.在圆形片状裂纹的情况下,数值结果与现有理论解作比较的结果表明,数值结果与相应界面圆形片状裂纹和均质体圆形片状裂纹的精确解均吻合得很好.文中以图表形式给出应力强度因子与材料组合和几何条件之间的关系.  相似文献   

12.
A new approximate analytical approach for accurate higher-order nonlinear solutions of oscillations with large amplitude is presented in this paper. The oscillatory system is subjected to a non-rational restoring force. This approach is built upon linearization of the governing dynamic equation associated with the method of harmonic balance. Unlike the classical harmonic balance method, simple linear algebraic equations instead of nonlinear algebraic equations are obtained upon linearization prior to harmonic balancing. This approach also explores large parameter regions beyond the classical perturbation methods which in principle are confined to problems with small parameters. It has significant contribution as there exist many nonlinear problems without small parameters. Through some examples in this paper, we establish the general approximate analytical formulas for the exact period and periodic solution which are valid for small as well as large amplitudes of oscillation.  相似文献   

13.
The fracture problems near the interface crack tip for mode Ⅱ of double dissimilar orthotropic composite materials are studied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized bi-harmonic equations,the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions,a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about himaterial engineering parameters. According to the uniqueness theorem of limit,both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same,the stress singularity exponents,stress intensity factors and stresses for mode Ⅱ crack of the orthotropic single material are obtained.  相似文献   

14.
There is considerable current interest in the development of constitutive equations for pressure-dependent plastic materials. In particular, in contrast to classical plasticity there is no commonly accepted relation to connect stress and strain or strain rate for such materials. Analytic and semi-analytic solutions are convenient to compare qualitative features of boundary value problems solved for different models. Such comparative studies can be useful to choose this or that model for specific applications. Analytic and semi-analytic solutions are also necessary to verify numerical codes. In the present paper, a new semi-analytic solution for a thin hollow disc subject to thermal loading is developed. A numerical method is only necessary to solve transcendental equations. The constitutive equations for connecting the plastic portion of the strain rate tensor and the stress tensor consist of the Drucker-Prager yield criterion and its associated flow rule. Therefore, the main distinguished feature of the solution is that the material is plastically compressible.  相似文献   

15.
A new approach to the solution of finite plane-strain problems for compressible Isotropie elastic solids is considered. The general problem is formulated in terms of a pair of deformation invariants different from those normally used, enabling the components of (nominal) stress to be expressed in terms of four functions, two of which are rotations associated with the deformation. Moreover, the inverse constitutive law can be written in a simple form involving the same two rotations, and this allows the problem to be formulated in a dual fashion.For particular choices of strain-energy function of the elastic material solutions are found in which the governing differential equations partially decouple, and the theory is then illustrated by simple examples. It is also shown how this part of the analysis is related to the work of F. John on harmonic materials.Detailed consideration is given to the problem of a circular cylindrical annulus whose inner surface is fixed and whose outer surface is subjected to a circular shear stress. We note, in particular, that material circles concentric with the annulus and near its surface decrease in radius whatever the form of constitutive law within the given class. Whether the volume of the material constituting the annulus increases or decreases depends on the form of law and the magnitude of the applied shear stress.  相似文献   

16.
Certain classes of slender structures of complex cross-section or fabricated from specialised materials can exhibit a bi-linear bending moment-curvature relationship that has a strong influence on their global structural behaviour. This condition may be encountered, for instance, in (a) non-linear elastic or inelastic post-buckling problems if the cross-section stiffness may be well approximated by a bi-linear model; (b) multi-layered structures such as stranded cables, power transmission lines, umbilical cables and flexible pipes where the drop in the bending stiffness is associated with an internal friction mechanism. This paper presents a mathematical formulation and an analytical solution for such slender structures with a bi-linear bending moment versus curvature constitutive behaviour and subjected to axial terminal forces. A set of five first-order non-linear ordinary differential equations are derived from considering geometrical compatibility, equilibrium of forces and moments and constitutive equations, with hinged boundary conditions prescribed at both ends, resulting a complex two-point boundary value problem. The variables are non-dimensionalised and solutions are developed for monotonic and unloading conditions. The results are presented in non-dimensional graphs for a range of critical curvatures and reductions in bending stiffness, and it is shown how these parameters affect the structure's post-buckling behaviour.  相似文献   

17.
Impact and wave propagation problems are considered for nonlinearly viscous and nonlinearly elastic materials. The governing partial differential equations are reduced to ordinary differential equations by means of similarity transformations. The resulting non-linear two point boundary value problems are then, in general, integrated numerically, although some closed form solutions are presented.  相似文献   

18.
The free and forced non-linear vibrations of a fixed orthotropic circular plate, with a concentric core of isotropic material, are studied. Existence of harmonic vibrations is assumed and thus the time variable is eliminated by a Ritz-Kantorovich method. Hence, the governing non-linear partial equations for the axisymmetric vibration of the composite circular plate are reduced to a set of ordinary differential equations which form a non-linear eigen-value problem. Solutions are obtained by utilizing the related initial-value problems in conjunction with Newton's integration method. The results reveal the effects of finite amplitude and anisotropy of materials upon the dynamic responses. Further, the method developed in this paper, which is used to solve the title problem, is one of some generality. It can be applied to many differential eigenvalue problems with piecewise continuous functions.  相似文献   

19.
A necessary and sufficient condition for the correct formulation of boundary integral equations of harmonic functions is established in the present paper. A super-determined problem of harmonic functions is proposed for the first time. Then a necessary and sufficient condition for the existence of solution of the super-determined problem is proved. At the same time, it is a necessary and sufficient condition for the correct formulation of boundary integral equations with direct unknown quantities. A relation between boundary integral equations and variational principles is discovered for the first time. And a one-to-one correspondence between boundary integral equations with direct and indirect unknown quantities is indicated. The concept and route of the present paper can be applied to other boundary value problems possessing variational principles.  相似文献   

20.
Indentation tests have long been a standard method for material characterization due to the fact that they provide an easy, inexpensive, non-destructive and objective method of evaluating basic properties from small volumes of materials. As the contact scales in such experiments reduce progressively (micro to nano-scales) the internal material lengths become important and their effect upon the macroscopic response cannot be ignored. In the present study, we derive general solutions for three basic two-dimensional (2D) plane-strain contact problems within the framework of the generalized continuum theory of couple-stress elasticity. This theory introduces characteristic material lengths in order to describe the pertinent scale effects that emerge from the underlying microstructure and has proved to be very effective for modeling microstructured materials. By using this theory, we initially study the problem of the indentation of a deformable elastic half-plane by a flat punch, then by a cylindrical indentor, and finally by a shallow wedge indentor. Our approach is based on singular integral equations which have resulted from a treatment of the mixed boundary value problems via integral transforms and generalized functions. The results show significant departure from the predictions of classical elasticity revealing that it is inadequate to analyze indentation problems in microstructured materials employing only classical contact mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号