首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Virtual memory (VM) CD8+ T cells are present in unimmunized mice, yet possess T‐cell receptors specific for foreign antigens. To date, VM cells have only been characterized in C57BL/6 mice. Here, we assessed the cytokine requirements for VM cells in C57BL/6 and BALB/c mice. As reported previously, VM cells in C57BL/6 mice rely mostly on IL‐15 and marginally on IL‐4. In stark contrast, VM cells in BALB/c mice rely substantially on IL‐4 and marginally on IL‐15. Further, NKT cells are the likely source of IL‐4, because CD1d‐deficient mice on a BALB/c background have significantly fewer VM cells. Notably, this NKT/IL‐4 axis contributes to appropriate effector and memory T‐cell responses to infection in BALB/c mice, but not in C57BL/6 mice. However, the effects of IL‐4 are manifest prior to, rather than during, infection. Thus, cytokine‐mediated control of the precursor population affects the development of virus‐specific CD8+ T‐cell memory. Depending upon the genetic background, different cytokines encountered before infection may influence the subsequent ability to mount primary and memory anti‐viral CD8+ T‐cell responses.  相似文献   

2.
3.
Innate immunity, which is unable to discriminate self from allo‐antigens, is thought to be important players in the induction of miscarriages. Here, we show that the administration of IL‐12 to syngeneic‐mated C57BL/6 mice on gestation day 7.5 (Gd 7.5), drives significant miscarriages in pregnant females. Furthermore, the administration on Gd 7.5 of α‐galactosylceramide (α‐GalCer), which is known to activate invariant natural killer T (iNKT) cells, induced miscarriages in both syngeneic‐mated C57BL/6 mice and allogeneic‐mated mice (C57BL/6 (♀) × BALB/c (♂)). Surprisingly, the percentages of both DEC‐205+ DCs and CD1d‐restricted NK1.1+ iNKT cells were higher in the myometrium of pregnant mice treated i.p. with α‐GalCer than in the decidua. IL‐12 secreted from α‐GalCer‐activated DEC‐205+ DCs stimulated the secretion of cytokines, including IL‐2, IL‐4, IFN‐γ, TNF‐α, perforin, and granzyme B, from the NK1.1+ iNKT cells in the myometrium, leading to fetal loss in pregnant mice. Finally, the i.p. administration of IL‐12 and/or α‐GalCer in iNKT‐deficient Jα18(‐/‐) (Jα18 KO) mice did not induce miscarriages. This study provides a new perspective on the importance of the myometrium, rather than the decidua, in regulating pregnancy and a mechanism of miscarriage mediated by activated DEC‐205+ DCs and NK1.1+ iNKT cells in the myometrium of pregnant mice.  相似文献   

4.
5.
Th17 cells are often associated with autoimmunity and been shown to be increased in CD11b?/? mice. Here, we examined the role of CD11b in murine collagen‐induced arthritis (CIA). C57BL/6 and CD11b?/? resistant mice were immunized with type II collagen. CD11b?/? mice developed arthritis with early onset, high incidence, and sustained severity compared with C57BL/6 mice. We observed a marked leukocyte infiltration, and histological examinations of the arthritic paws from CD11b?/? mice revealed that the cartilage was destroyed in association with strong lymphocytic infiltration. The CD11b deficiency led to enhanced Th17‐cell differentiation. CD11b?/? dendritic cells (DCs) induced much stronger IL‐6 production and hence Th17‐cell differentiation than wild‐type DCs. Treatment of CD11b?/? mice after establishment of the Treg/Th17 balance with an anti‐IL‐6 receptor mAb significantly suppressed the induction of Th17 cells and reduced arthritis severity. Finally, the severe phenotype of arthritis in CD11b?/? mice was rescued by adoptive transfer of CD11b+ DCs. Taken together, our results indicate that the resistance to CIA in C57BL/6 mice is regulated by CD11b via suppression of IL‐6 production leading to reduced Th17‐cell differentiation. Therefore, CD11b may represent a susceptibility factor for autoimmunity and could be a target for future therapy.  相似文献   

6.
Background: CD1d-dependent invariant natural killer (iNKT) cells are found as either CD4 single positive (SP) or CD4/CD8 double negative (DN) cells in mice. The size of the CD8+ iNKT population is extremely small. It is known that CD1d expression on developing thymocytes is sufficient for iNKT development and co-receptor choice, which is driven by Th-POK expression. This study aimed to examine the factors involved in the CD4/CD8 co-receptor choice of iNKT cells in addition to Th-POK-driven silencing of CD8 expression. Methods: In this study, we compared iNKT cells of wild-type (WT) mice with those of transgenic mice in which CD1d expression is restricted to developing thymocytes by the proximal Lck (pLCK) promoter. CD8 positive iNKT cell population were analyzed by flow cytometry. Results: We found that there was a substantial population of CD8+ iNKT cells in the thymus and spleen of transgenic mice, and these cells are negatively selected in between Stage 2 and Stage 3 of their developmental program by the CD1d expressed on Thymic epithelial cell (TEC) and Dendritic cells in WT mice. Conclusion: We conclude that TEC expression of CD1d in the murine thymus contributed to co-receptor choice of iNKT cells, in addition to Th-POK-driven silencing of CD8. Therefore, mostly CD4 SP and DN iNKT cells are produced under normal physiological conditions in mice.  相似文献   

7.
NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger+ IL‐4+ NKT cells and upregulation of LFA‐1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28‐deficient mice is cell autonomous. Moreover, we show in both wild‐type C57BL/6 mice and in downstream of tyrosine kinase‐1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28‐mediated regulation of thymic IL‐4+ NKT cells promotes the differentiation of eomesodermin+ CD44high innate‐like CD8+ T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT‐cell homeostasis and the size of the innate‐like CD8+ T‐cell pool.  相似文献   

8.
Role of CD4(+)CD25(+) T regulatory cells in IL-2-induced vascular leak   总被引:2,自引:0,他引:2  
T regulatory cells (CD4(+)CD25(+)) play an important role in the regulation of the immune response. However, little is known about the ability of T regulatory cells to regulate endothelial cell (EC) damage following activation of lymphocytes with IL-2. Therefore, in the current study, we examined the role of T regulatory cells and the subsequent T(h)1/T(h)2 bias in IL-2-mediated EC injury using the well-characterized C57BL/6 (T(h)1-biased) and BALB/c (T(h)2-biased) models. Following IL-2 treatment, BALB/c mice were less susceptible to IL-2-induced vascular leak syndrome (VLS) compared with C57BL/6 mice. Splenocytes from BALB/c mice displayed less cytotoxicity against ECs compared with those from C57BL/6 mice. Interestingly, BALB/c mice had significantly higher numbers of CD4(+)CD25(+) T regulatory cells, which proliferated more profoundly following IL-2 treatment, compared with CD4(+)CD25(+) T regulatory cells from C57BL/6 mice. In addition, T regulatory cells from naive BALB/c mice were more potent suppressors of anti-CD3 mAb-stimulated proliferation of T cells than similar cells from C57BL/6 mice. Depletion of T regulatory cells in both BALB/c and C57BL/6 mice led to a significant increase in IL-2-induced VLS. Together, the results from this study suggest that CD4(+)CD25(+) T regulatory cells play an important role in the regulation of IL-2-induced EC injury.  相似文献   

9.
The magnitude of the cellular adaptive immune response is critical for the control of Mycobacterium tuberculosis infection in the chronic phase. In addition, the genetic background is equally important for resistance or susceptibility to tuberculosis. In this study, we addressed whether lung populations of dendritic cells, obtained from genetically different hosts, would play a role in the magnitude and function of CD4+ populations generated after M. tuberculosis infection. Thirty days post-infection, C57BL/6 mice, which generate a stronger interferon-γ (IFN-γ)-mediated immune response than BALB/c mice, exhibited a higher number and frequency of lung CD11c+ CD11b CD103+ cells compared with BALB/c mice, which exhibited a high frequency of lung CD11c+ CD11b+ CD103 cells. CD11c+ CD11b CD103+ cells, purified from lungs of infected C57BL/6 mice, but not from infected BALB/c mice, induced a higher frequency of IFN-γ-producing or interleukin-17 (IL-17)-producing CD4+ cells. Moreover, CD4+ cells also arrive at the lung of C57BL/6 mice faster than in BALB/c mice. This pattern of immune response seems to be associated with higher gene expression for CCL4, CCL19, CCL20 and CCR5 in the lungs of infected C57BL/6 mice compared with infected BALB/c mice. The results described here show that the magnitude of IFN-γ-producing or IL-17-producing CD4+ cells is dependent on CD11c+ CD11b CD103+ cells, and this pattern of immune response is directly associated with the host genetic background. Therefore, differences in the genetic background contribute to the identification of immunological biomarkers that can be used to design human assays to predict progression of M. tuberculosis infection.  相似文献   

10.
A keenly sought therapeutic approach for the treatment of allergic disease is the identification and neutralization of the cytokine that regulates the differentiation of T helper 2 (Th2) cells. Th2 cells are exciting targets for asthma therapies. Recently, the cytokine IL‐25 has been shown to enhance Th2‐type immune activity and play important roles in mediating allergic inflammatory responses. To investigate this further, we crossed IL‐25?/? C57BL/6 mice with G4 IL‐4 C57BL/6 reporter mice and developed an assay for in vitro and in vivo IL‐4‐independent Th2‐cell differentiation. These assays were used to determine whether IL‐25 was critical for the formation of Th2 cells. We found there was no physiological role for IL‐25 in either the differentiation of Th2 cells or their development to effector or memory Th2‐cell subsets. Importantly, this data challenges the newly found and growing status of the cytokine IL‐25 and its proposed role in promoting Th2‐cell responses.  相似文献   

11.
Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti‐tumor, and anti‐microbial immune responses, and are activated by glycolipids presented by the MHC class I‐like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)‐dependent iNKT cell activation is not well‐known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d‐mediated Ag presentation in APCs, but also contributes to CD1d‐independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d‐independent, but IL‐12‐dependent manner, we found the virus‐induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild‐type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL‐12 receptors. As with a VV infection, an IL‐12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d‐mediated Ag presentation and contributes to IL‐12‐induced iNKT cell activation and loss during viral infections.  相似文献   

12.
Invariant natural killer T (iNKT) cells are adaptive T cells with innate‐like characteristics including rapid cytokine production and a proliferative response to stimulation. Development of these cells in the thymus is dependent on expression of the microRNA (miRNA) processing enzyme Dicer, indicating that iNKT cells probably have distinct miRNA requirements for gene regulation during development. The miRNA miR‐155 has previously been shown to have numerous roles in T cells, including regulation of proliferation and differentiation, and positive modulation of interferon‐γ expression. We examined the role of miR‐155 in the development and function of iNKT cells. Using germline‐deficient miR‐155 mice, we showed that loss of miR‐155 resulted in unchanged iNKT cell frequency and cell number. Although miR‐155 was up‐regulated in iNKT cells upon activation with α‐galactosylceramide, loss of miR‐155 did not affect cytokine production or proliferation by iNKT cells. Hence, cytokine production occurs in iNKT cells independently of miR‐155 expression.  相似文献   

13.
Subpopulations of lymphoid cells were compared with respect to their ability to migrate into peripheral lymphoid organs of nonobese diabetic (NOD) mice and various strains of control mice. In short-term, in vivo homing studies, no major differences in the pattern of homing of B and T cells were observed among all mouse strains studied. On the other hand, CD4 cells localized consistently more efficiently than CD8 cells in both PP and LN of adult NOD and BALB/c mice, whereas both populations migrated roughly equivalently in LN of adult DBA/2, CBA, and C57BL/6 mice. No age-dependent differences in the homing of CD4 and CD8 cells were observed in BALB/c mice. On the contrary, in 2-week-old NOD mice, CD4 and CD8 cells migrated equally well. The preferential entry of CD4 cells in adult NOD and BALB/c did not result from increased blood transit time of CD8 cells. On the other hand, the preferential migration of CD8 cells was observed in the liver, whereas the two T-cell subsets migrated equally well in the lungs. The differences in the homing characteristics of CD4 and CD8 cells among NOD, BALB/c, and C57BL/6 mice were not related to modifications in the level of expression of adhesion molecules such as MEL-14, LFA-1, and Pgp-1.  相似文献   

14.
The thymus is a primary lymphoid organ responsible for production and selection of T cells. Nonetheless, mature T cells and in particular activated T cells can reenter the thymus. Here, we identified memory CD8+ T cells specific for lymphocytic choriomeningitis virus or vaccinia virus in the thymus of mice long‐time after the infection. CD8+ T cells were mainly located in the thymic medulla, but also in the cortical areas. Interestingly, virus‐specific memory CD8+ T cells in the thymus expressed the cell surface markers CD69 and CD103 that are characteristic of tissue‐resident memory T cells in a time‐dependent manner. Kinetic analyses and selective depletion of peripheral CD8+ T cells by antibodies further revealed that thymic virus‐specific memory CD8+ T cells did not belong to the circulating pool of lymphocytes. Finally, we demonstrate that these thymus‐resident virus‐specific memory CD8+ T cells efficiently mounted a secondary proliferative response, exhibited immediate effector functions and were able to protect the thymus from lymphocytic choriomeningitis virus reinfection. In conclusion, the present study not only describes for the first time virus‐specific memory CD8+ T cells with characteristics of tissue‐resident memory T (TRM) cells in a primary lymphoid organ but also extends our knowledge about local T‐cell immunity in the thymus.  相似文献   

15.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

16.
We investigated the phenotypic basis for genetically determined differences in susceptibility and resistance to Chlamydia muridarum pulmonary infection using BALB/c and C57BL/6 mice. Following C. muridarum intranasal inoculation, the intensity of infection was very different between BALB/c and C57BL/6 beginning as early as 3 days post‐infection. Intrapulmonary cytokine patterns also differed at early time‐points (days 2 and 4) between these two strains of mice. The early recruitment of neutrophils to lung tissue was greater in BALB/c than in C57BL/6 mice and correlated with a higher number of inclusion forming units (IFU) of C. muridarum. At day 12 post‐infection, BALB/c mice continued to demonstrate a greater burden of infection, significantly higher lung cytokine levels for tumour necrosis factor‐α and interleukin‐17 (IL‐17) and a significantly lower level for interferon‐γ than did C57BL/6 mice. In vitro, bone‐marrow‐derived dendritic cells (BMDCs) from BALB/c mice underwent less functional maturation in response to C. muridarum infection than did BMDCs from C57BL/6 mice. The BMDCs of BALB/c mice expressed lower levels of activation markers (CD80, CD86, CD40 and major histocompatibility complex class II) and secreted less IL‐12 and more IL‐23 than BMDCs from C57BL/6 mice. Overall, the data demonstrate that the differences exhibited by BALB/c and C57BL/6 mice following C. muridarum pulmonary infection are associated with differences in early innate cytokine and cellular responses that are correlated with late differences in T helper type 17 versus type 1 adaptive immune responses.  相似文献   

17.
T‐cell homeostasis preserves the numbers, the diversity and functional competence of different T‐cell subsets that are required for adaptive immunity. Naïve CD4+ T (TN) cells are maintained in the periphery via the common γ‐chain family cytokine IL‐7 and weak antigenic signals. However, it is not clear how memory CD4+ T‐cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE‐labeled CD4+CD44highCD62Llow effector memory T (TEM) cells were transferred into sublethally‐irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL‐7. The simultaneous blockade of both OX40 and IL‐7 signaling completely inhibited the both fast and slow proliferation. The antigen‐ and OX40‐dependent fast proliferation preferentially expanded IL‐17‐producing helper T cells (Th17 cells). Thus, OX40 and IL‐7 play synergistic, but distinct roles in the homeostatic proliferation of CD4+ TEM cells.  相似文献   

18.
Graft‐versus‐host disease (GvHD) is a frequent life‐threatening complication following allogeneic HSC transplantation (HSCT). IL‐10 is a regulatory cytokine with important roles during GvHD, yet its relevant sources, and mode of action, remain incompletely defined in this disease. Using IL‐10‐deficient donor or host mice (BALB/c or C57BL/6, respectively) in a MHC‐mismatched model for acute GvHD, we found a strongly aggravated course of the disease with increased mortality when either donor or host cells could not produce this cytokine. A lack of IL‐10 resulted in increased allogeneic T‐cell responses and enhanced activation of host DCs in spleen and MLNs. Remarkably, IL‐10 was prominently produced by host‐ and donor‐derived CD5intCD1dintTIM‐1int B cells in this disease, and consistent with this, allogeneic HSCT resulted in exacerbated GvHD when mice lacking IL‐10 expression in B cells were used as donor or host, compared with controls. Taken together, this study demonstrates that host and donor B cell‐derived IL‐10 provides a unique mechanism of suppression of acute GvHD, and suggests that DCs are the targets of this B cell‐mediated suppressive effect. These findings open novel therapeutic possibilities based on the use of B cells to increase the feasibility of allogeneic HSCT.  相似文献   

19.
Upon transplantation of T cells from a CD28 superagonist (CD28‐SA) treated donor into an irradiated allogeneic host, the CD28‐SA‐induced activation and expansion of Treg cells inhibits acute graft versus host disease (aGvHD), while not abrogating the desired graft versus tumor effect. Human peripheral blood CD4+ T cells, however, harbor only very few Treg cells. Therefore, we studied whether polyclonal in vitro prestimulation of conventional, that is Treg‐cell‐depleted, CD4+ T cells of C57BL/6 mice with CD28‐SA‐coated paramagnetic beads is sufficient to protect recipient BALB/c mice from aGvHD. CD28‐SA prestimulation of conventional CD4+ T cells efficiently protected BALB/c recipient mice from aGvHD and CD28‐SA‐stimulated CD4+ and CD8+ T cells were capable of mediating long‐term protection from the BCL1 lymphoma. The recently completed successful phase I testing of the human CD28‐SA TGN1412/TAB08 should greatly facilitate further development of this straightforward method into a novel immunotherapy for patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号