首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
以玻璃纤维/聚丙烯为研究对象,建立热塑性熔融树脂浸渍纤维的理论模型,模型表征在实验过程中不同加工工艺条件、熔体黏度以及纤维结构对树脂完全浸渍纤维束所需时间的影响,同时探讨了相关机理。树脂浸渍纤维的程度通过所制试样的层间剪切强度来表征,并通过扫描电镜对预浸带界面进行研究,结果表明:纤维束在浸渍机头中的停留时间、浸渍机头的温度、纤维束展宽以及选择不同的树脂基体,均将影响树脂与纤维两相间的界面结合,并最终影响材料的力学性能;树脂基体中添加相容剂马来酸酐接枝聚丙烯(PP-g-MAH)在玻璃纤维和树脂基体两相间能够起到交联作用,明显提高两相间的界面结合强度,使得复合材料的力学性能优于未添加PP-g-MAH的试样,但在基体中添加过多的PP-g-MAH,试样的力学性能则表现出下降的趋势。  相似文献   

2.
将不同配比的高黏度聚丙烯与低黏度聚丙烯共混制备高低黏度树脂混配基体,旋转流变测试结果显示低黏度聚丙烯的加入显著降低了共混体系的黏度。以高低黏度聚丙烯共混物为热塑树脂基体,采用熔融浸渍方法制备连续玻纤增强聚丙烯热塑预浸带。研究发现随着低黏度聚丙烯含量的增加,热塑树脂基体的加工性能明显提高,预浸带制品的孔隙率及纤维断裂率逐渐降低。将各组预浸带模压成型后进行力学测试,结果显示低黏度聚丙烯的加入使层压板层间剪切强度、弯曲强度、拉伸强度均出现小幅度下降,而对冲击强度基本无影响。结合加工性能及力学性能,低黏度聚丙烯质量分数10%时共混物的综合性能最佳。  相似文献   

3.
采用薄膜叠压法制备玻纤布增强高黏度聚丙烯热塑复合材料,研究了高黏度聚丙烯熔体浸渍玻璃纤维布过程。通过旋转流变测试分析,可知高黏度聚丙烯树脂熔体在浸渍过程中表现为非牛顿流体特性。以达西定律为理论基础,结合材料物性参数和工艺参数,推导了非牛顿流体浸渍玻璃纤维布的浸渍模型。在不同的浸渍压力与存留时间条件下对模型进行实验验证,理论值与实验值基本吻合。利用建立的浸渍模型分析了浸渍工艺对复合材料浸渍过程的影响,结果表明通过升高温度和提高压力等途径可减小浸渍时间。  相似文献   

4.
采用自行设计的两种不同结构的熔融浸渍模具制备了连续玻璃纤维增强聚丙烯预浸带,测试了模具结构对预浸带的孔隙率、纤维断裂率、界面形貌、纤维分散均匀度和拉伸强度的影响,建立了纤维浸渍模型和纤维断裂模型,并通过理论模型对预浸带的孔隙率和断裂率进行理论预测。结果表明,本文建立的数学模型能够有效预测预浸带的浸渍程度和纤维断裂率,可用于浸渍模具结构的优化设计;在本文范围内,与波浪形模具相比,斜齿形模具的多楔形区结构可以有效地降低预浸带孔隙率和提升纤维分散程度;波浪形模具的流道圆角半径较大,楔形区个数较少,与斜齿形模具相比,可有效降低纤维断裂率并提升拉伸性能。  相似文献   

5.
采用熔融浸渍工艺和自行设计的弯曲流道浸渍模具,对长纤维增强PA66复合材料熔融浸渍过程中的纤维断裂进行研究,建立了纤维断裂数学模型,并实验验证了模型的可靠性。通过Design-Expert软件设计实验,采用模型模拟了模具结构对纤维断裂的影响。结果表明:接触区高度差和接触区数目对纤维断裂影响显著,其次为模具的圆角半径和弯曲角度;通过减少接触区高度差以及接触区数目可有效降低纤维断裂率,提高加工过程的稳定性。  相似文献   

6.
运用正交设计的方法,探讨了亚麻/聚丙烯纤维复合材料的制备工艺.对不同模压温度和不同亚麻纤维含量的复合材料进行比较,分析模压温度和增强纤维含量对复合材料力学性能的影响,确定最佳模压温度及最佳混合比,为发展环保型复合材料提供了理论和实验依据.  相似文献   

7.
以丙纶长纤为经纱,剑麻连续长纤为纬纱,织成剑麻/PP平纹机织物.采用不同浓度的氢氧化钠对织物进行碱处理,将处理后的织物与聚丙烯薄板模压成型,制备出剑麻连续长纤增强聚丙烯复合材料.采用SEM对碱处理前后的剑麻纤维形貌进行分析,讨论不同碱处理浓度对复合材料力学性能的影响.结果表明:碱处理对剑麻连续长纤的表面具有刻蚀作用,以及对剑麻连续长纤增强聚丙烯复合材料的动态热机械性能、拉伸性能、弯曲性能均有一定的影响.  相似文献   

8.
分别以五种聚烯烃树脂为基体,采用自行设计的浸渍模具制备了连续玻璃纤维增强聚烯烃预浸带,并采用热模压机将预浸带压制成相应的板材.研究了五种基体树脂、纤维含量、纤维分布对复合材料力学性能的影响.结果表明,加入玻纤后复合材料的拉伸强度、弯曲强度大幅度提高,纤维分布对材料的弯曲性能影响较大;纤维含量0~70%范围内,随纤维用量的增加,复合材料的力学性能提高;在70%~75%范围内,复合材料的力学性能随纤维含量的增加而降低.动态力学分析表明,加入纤维后明显提高了复合材料的抗形变能力.  相似文献   

9.
为增强低强度珊瑚混凝土的抗冲击荷载性能,进行了聚丙烯纤维增强0.33、0.4和0.47三种水灰比的珊瑚混凝土抗冲击性能试验研究。结果表明:掺加聚丙烯纤维可以有效地降低珊瑚混凝土的脆性,延缓冲击裂缝的形成和开展,进而增强珊瑚混凝土的抗冲击性能;在一定范围内,随着聚丙烯纤维掺量的增加,初裂冲击次数和破坏冲击次数均呈递增趋势,珊瑚混凝土初裂和破坏时吸收的能量逐渐增大;过多的聚丙烯纤维在珊瑚混凝土基体中不易均匀分散,并使界面过渡区孔隙率与缺陷增多,增强效果逐渐降低。  相似文献   

10.
用硝酸铈铵作引发剂,将甲基丙烯酸甲酯(MMA)原位接枝到剑麻纤维(SF)的表面,考察了引发剂浓度和MMA/SF质量比对接枝率的影响。用注塑成型工艺制备了剑麻纤维/聚丙烯(PP)复合材料及MMA接枝SF/PP复合材料,研究了剑麻长度、含量、接枝率以及不同预处理对复合材料力学性能的影响,对长度10mm的剑麻纤维,其接枝率为31.5%时,5wt%的剑麻掺量下试样的抗拉强度可达31.1MPa,对应断裂伸长率为19.3%.  相似文献   

11.
基于纳米颗粒比表面积高的特性,将超声震荡分散后的纳米SiO2通过化学接枝方法修饰玻璃纤维表面制备玻璃纤维/聚丙烯热塑性复合材料。通过扫描电子显微镜(SEM)表征纳米SiO2在玻纤表面的分布状态及其与纤维树脂的结合情况,结果表明纳米颗粒在纤维表面分布状况良好,纤维与树脂能较为紧密地结合。通过动、静态力学测试表征复合材料的界面结合情况及整体力学性能,结果表明复合材料在动态热机械分析(DMA)测试下具备良好的综合界面性能;与空白组对比,复合材料的层间剪切强度最高提升约86%,拉伸强度最高提升约300%,弯曲强度最高提升约94%。  相似文献   

12.
以双酚A二缩水甘油醚(DGEBA)和对甲氧基苯胺为单体制备了芳香型聚胺醚,并通过原位聚合的方法制备了连续玻纤增强热塑性聚胺醚(GF/PHAE)复合材料。研究了DGEBA/对甲氧基苯胺体系的反应特性、动态黏度、熔体流动速率(MFR)、耐热性及聚胺醚浇注体和GF/PHAE复合材料的力学性能,采用红外光谱法(FT-IR)对聚胺醚进行了结构分析,并借助SEM分析了GF/PHAE复合材料的断面形貌。研究结果表明:DGEBA/对甲氧基苯胺体系在25 ℃下放置85 min后黏度为2100 mPa•s,黏度较低有利于纤维的浸润;聚胺醚为可熔融的热塑性聚合物,反应时间5 h、反应温度140 ℃下制备的聚胺醚熔融指数较低为1.4 g/10min;聚胺醚的玻璃化转变温度(Tg)为86.7 ℃,起始分解温度为310.2 ℃;聚胺醚浇注体的弯曲强度126.9 MPa,弯曲模量10.2 GPa;当玻纤体积分数为59.3%时,GF/PHAE复合材料弯曲强度1327.2 MPa,弯曲模量21.8 GPa,层间剪切强度86.2 MPa;SEM断面分析表明聚胺醚对玻璃纤维具有良好的界面黏接。  相似文献   

13.
采用停留时间分布(RTD)函数和自行设计的弯曲流道浸渍模具,对连续纤维增强聚酰胺复合材料加工过程中的停留时间进行研究,建立了弯曲流道停留时间的数学模型,并通过实验验证了模型的可靠性,结果表明该模型可以准确预测树脂在浸渍模具中的停留时间。采用Box-Behnken响应面法设计5因素3水平的试验方案,模拟了模具结构对加工过程中外部累积体积分数为95%时所对应的停留时间(t95)的影响,结果表明,流道单元长度和流道单元个数对t95的影响最大。通过模拟优化试验得到了浸渍模具结构的最优参数为:流道单元长度12.5 mm,流道圆角半径3 mm,流道单元个数10个,流道单元夹角160°,模具间隙1.4 mm。  相似文献   

14.
水泥混凝土增强用短切聚丙烯纤维分散助剂   总被引:1,自引:0,他引:1  
以分子量6 500的聚醚作为主平滑剂,配以聚醚型乳化剂及自制的多电荷抗黏结剂等其他添加剂进行复配,制备水泥混凝土用超短纤维分散助剂,并对其性能进行了系统的研究.结果表明:该分散助剂具有良好的平滑性、润湿性及抗黏结性;用该分散助剂对聚丙烯纤维表面进行处理,不仅能满足纺丝工艺的要求,而且切断后还使纤维具有良好的分散效果;短切纤维在水泥体系中能形成均匀的乱向支撑结构.通过平板试验发现,聚丙烯超短纤维的加入能有效延缓混凝土表面的湿度下降,提高了混凝土体系的强度,阻滞了基体材料的裂纹扩展,改善了基体的抗疲劳性能.  相似文献   

15.
植物纤维/聚丙烯复合材料增韧性研究   总被引:2,自引:0,他引:2  
针对植物纤维/聚丙烯复合材料脆性大的问题,选用三元乙丙橡胶 (EPDM)及乙烯-辛烯共聚物 (POE)对复合材料进行增韧研究。结果表明,该复合体系中,当植物纤维含量较低时,植物纤维在基体中分布均匀,且EPDM及POE质量分数均为25%左右时增韧效果较好,且POE的增韧效果优于EPDM;当植物纤维含量较高时,会出现团聚现象。而加入相容剂马来酸酐接枝聚丙烯共聚物(MAPP)也会提高复合材料的韧性。  相似文献   

16.
加压凝固熔模铸造制备纤维增强铝基复合材料   总被引:2,自引:0,他引:2  
将熔模精密铸造和预制型液态浸渗技术相结合,开发了一种制备连续(长)纤维增强铝基复合材料的加压凝固熔模精密铸造工艺.该工艺将增强纤维的放置和零件的蜡模制作相结合,可直接生产出高精度的近净形复合材料零件.选定了Sumitomo Chemical公司生产的Altex SN型γ-Al2O3纤维作为复合材料的增强体,并开发了适合加压凝固熔模精密铸造工艺条件的铝合金基体材料AlZn6Mg1Ag1.试验表明这种γ-Al2O3连续纤维增强铝合金复合材料对加压凝固熔模精密铸造工艺有较好的适应性,并有非常理想的强度性能,具有广阔的应用前景.热处理(T6)后复合材料沿纤维方向的抗拉强度σb,0° =1 003 MPa,垂直于纤维方向的抗拉强度σb,90° =220 MPa.  相似文献   

17.
聚丙烯纤维混凝土的力学特性及路面工程应用   总被引:6,自引:0,他引:6  
在试验研究的基础上 ,介绍了聚丙烯纤维混凝土的物理性能和抗压、抗折强度的试验结果 ,并对其施工工艺进行了研究。将聚丙烯纤维应用于实际工程 ,铺设了 2 0 0米长的试验路段 ,取得了较好的使用效果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号