首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gd_2O_3:Er~(3+) nanophosphors were fabricated by the combustion method in presence of Na_2 ethylene diamine tetra acetic acid(EDTA-Na_2) as fuel at not high temperature(≤350℃) within a very short time of 5 min.The added concentration of Er~(3+)ions in Gd_2O_3 matrix was changed from 0.5 mol% to 5.0 mol%.The X-ray diffraction pattern of samples indicates the monoclinic structure of Gd_2O_3:Er3+.The morphology and chemical composition analysis of the Gd_2O_3:Er~(3+) samples are characterized by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared spectrometer(FTIR).The photoluminescence(PL),photo luminescence excitation(PLE) and upconversion(UC) at room temperature of the prepared materials with different concentrations of Er~(3+) were investigated.The PL of Gd_2O_3:Er~(3+)nanomaterials are shown in visible at 545,594,623,648,688 nm under excitation at 275 nm.The emission bands from transitions of Er~(3+) from ~2P_(3/2) to ~4F_(9/2) are observed,UC luminescent spectra of the Gd_2O_3:Er~(3+)/silica nanocomposites under 976 nm excitation show the bands at 548 and 670 nm.The influence of excitation power at 980 nm for transitions were measured and calculated.The results indicate that the upconversion process of Gd_2O_3:Er~(3+)/silica is two photons absorption mechanism.The low temperature dependence of UC luminescent intensities of the main bands of Gd_2O_3:Er~(3+)was investigated towards development of a nanotemperature sensor in the range of 10-300 K.  相似文献   

2.
An optical heater based on hexagonal NaGdF_4:Yb~(3+)/Er~(3+) is reported. XRD, SEM and EDS characterization results show that F~-/Ln~(3+) can not only control the phase composition, particle size and morphology, but also affect the effective doping concentration of Yb~(3+) and Er~(3+).When F~-/Ln~(3+) is 12/1, the strongest upconversion luminescence is obtained. Based on the luminescent temperature sensing behavior of Er~(3+),the photo-thermal conversion performance was investigated. The results indicate that the temperature of irradiation spot is linearly dependent on the power density, and the photo-thermal responsivity is determined to be 3.3K·cm~2/W. Also, it is found that the photo-thermal conversion efficiency can be regulated by changing the Yb~(3+) doping concentration. Compared with the nano-gold, copper sulfide and carbon nanotubes, the NaGdF_4:Yb~(3+)/Er~(3+) has the triple functions of upconversion luminescence, temperature sensing, and photo-thermal conversion, and may therefore be a promising optical heater for photo-thermal therapy of tumors.  相似文献   

3.
In this article upconversion luminescence of silver nanoparticles(AgNPs) coated NaYF_4:Er~(3+)/Yb~(3+)phosphor nano-particles was investigated.The prepared samples were characterized through various techniques.The surface plasmon band is observed for prepared AgNPs by analyzing UV-vis measurements and is used to enhance the upconversion emission.From the upconversion measurement the emission bands are observed at 522,546,and 656 nm corresponding to the ~2 H_(11/2)→ 4~1_(15/2),~4 S_(3/2)→~4 I_(15/2)and ~4 F_(9/2)→~4 I_(15/2) levels,respectively.The upconversion emission intensity of the above bands is found to enhance for sample containing 1 mmol AgNPs.Decay time of ~4 S_(3/2) and 4~F_(9/2) levels is found to decrease on coating of AgNPs and hence intensity enhancement is assumed due to the surface plasmon resonance(SPR) effect.  相似文献   

4.
The Er3+doped double perovskite Ba2 CaWO6 crystal is a promising ratiometric thermometer based on the fluorescence intensity ratio(FIR) of transitions from 2 H11/2 and 4 S3/2to the lowered 4 I15/2 level.However,the Ca2+vacancy defect caused by the charge difference between rare-earth ions and the substituted alkaline-earth ions gives rise to the non-radiative probability and limits the t...  相似文献   

5.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

6.
Herein, we reported Er~(3+)/Yb~(3+) co-doped CaLaAl_3O_7 up-conversion phosphors synthesized via solid state reaction, which was further explored as a new optical thermometry. The luminescent properties of Er~(3+) or Er~(3+)/Yb~(3+) doped CaLaAl_3O_7 phosphor was studied in detail. The two-photon process for the green emissions of Er~(3+) were confirmed by the power-dependent luminescence. The up-conversion optical temperature sensing performances of the Er~(3+)/Yb~(3+)-codoped CaLaAl_3O_7 phosphor were investigated based on the FIR technique. The maximum sensitivity of this phosphor can reach about 0.00345 K~(-1) at 453 K, which reveals this phosphor can be a promising candidate for optical thermometry devices.  相似文献   

7.
In this study, the hexagonal NaYF4:Yb3+/Ho3+/Ce3+ microcrystals were synthesized controllably, and upconversion luminescence excited at 940 nm and its application in temperature-responsive anti-counterfeiting are reported. It is clarified that the Ln3+ (Ln = Y + Yb + Ho + Ce) density ratio of bottom plane to side plane in the unit cell can be regulated by Ce3+ doping. It is also proved that the energy transfer of Yb3+ to Ho3+ is responsible for the activation of Ho3+ under 940 nm excitation, while the cross relaxation between Ho3+ and Ce3+ participates in the redistribution of electron population of 5S2/5F4 and 5F5 levels. Both theory and experiment confirm that the intensity ratio of red to green emission (IR/IG) as a function of temperature as an independent variable has good linear characteristics in the temperature range of 300–500 K. Due to the good responsiveness of multicolor luminescence to temperature, the hexagonal NaYF4:Yb3+/Ho3+/Ce3+ with tunable morphology is a promising candidate for advanced temperature-responsive upconversion anti-counterfeiting. Our results provide a new pathway for the controllable synthesis of hexagonal NaYF4 microcrystals as well as the regulation of upconversion luminescence that is excited by wavelengths other than 980 nm and its application in anti-counterfeiting.  相似文献   

8.
Herein, we reported novel Y4GeO8:Er3+,Yb3+ phosphors elaborated via conventional solid-state reaction, and we further explored their properties as optical thermometer by using fluorescence intensity ratio (FIR) method complemented by detailed analysis on crystal structure, up-conversion luminescence and energy transfer from Yb3+ to Er3+. Upon 980 nm laser excitation, Y4GeO8:Er3+,Yb3+ phosphors present 525, 547 and 659 nm emission bands assigned to the characteristic transitions of Er3+. Furthermore, Y4GeO8:Er3+,Yb3+ samples show outstanding temperature sensing performances. To be specific, the minimal temperature resolution is 0.03 K (303 K), and the relative sensitivity of FIR can be up to 1.152%/K (303 K). Hence, Y4GeO8:Er3+,Yb3+ phosphors can be possible candidates for thermometry devices.  相似文献   

9.
A novel non-contact optical thermometer, qualified with high sensitivity and temperature resolution, is urgently needed for temperature measuring of micro devices, moving objects and specific severe environments. Hence, a series of dual-emitting La5Si2BO13:Ce3+,Eu2+ phosphors were synthesized. The two ions show diverse responses with the changing in temperature. The variational emissions of Ce3+ and Eu2+ can be converted to FIR (fluorescence intensity ratio) signals. The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K, respectively. It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region (293–373 K), showing the great temperature measuring property especially in low temperature region. The temperature sensing characteristics are superior to the results of most previous reports. The energy transfer (ET) process is certified to occur from Ce3+ to Eu2+ ions. These studies indicate that La5Si2BO13: Ce3+,Eu2+ phosphor could have a good prospect for optical thermometry.  相似文献   

10.
We synthesized NaY(MoO_4)_2:Eu~(3+)phosphors of different doping concentrations by a molten salt method.This facile way possesses advantages such as simple process,lower calcination temperature(350℃) and small particle size(70 nm).The crystal system is tetragonal phase and crystal lattice is body centered.The photo luminescence measurements including emission spectra,excitation spectra and fluorescence decay curves were carried out,elucidating that NaY(MoO_4)_2:Eu~(3+)can be effectively excited by near UV and blue light.Moreover,it can be concluded that Eu3+energy transfer type is exchange interaction.Huang-Rhys factor and the critical energy transfer distance(Rc) were calculated to be 0.043 and 0.995 nm,respectively.Auzel's model was used to obtain the intrinsic radiative transition lifetime of~5 D_0 level(τ_0=0.923 ms).Furthermore,a calculation method was used to calculate refractive index n of nontransparent NaY(MoO_4)_2:1 mol% Eu3+phosphor,and n was obtained to be 1.86.  相似文献   

11.
A series of mono-dispersed hexagon NaGdF_4:Yb~(3+),Er~(3+)@NaGdF_4 core-shell nanoparticles with different shell thickness were synthesized via a co-precipitation method. Nanoparticles with high upconversion fluorescent emissions result in large signal-to-noise ratio, which guarantees the accuracy of the sensitivity. Besides, the maximum sensitivity of these NPs as detection film increases first and then decreases with the shell thickness increasing. When the shell thickness is 2.3 nm(NaGdF_4-2), the maximum sensitivity(0.69959 ppm~(-1)) is reached. A large degree of overlap between the rhodamine B absorption band and the Er~(3+) green emission bands ensures that the NaGdF_4:Yb~(3+),Er~(3+)@NaGdF_4 nanoparticles can be used as fluorescent probe to detect the concentration of rhodamine B based on fluorescent intensity ratio technology. The linear relationship between the rhodamine B concentration and the intensity ratio(R) of green and red emission intensity(I_(S+H) and I_F) were studied systematically. The result shows that the maximum sensitivity can be obtained in low concentration rhodamine B(4 ppm), which is lower than the reported minimum detection concentration. Thus, the ultra-high sensitivity detection by NaGdF_4:Yb~(3+),Er~(3+)@NaGdF_4 core-shell upconversion nanoparticles in low concentration can be realized,which provides promising applications in bio-detection filed.  相似文献   

12.
Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications. However, the low uptake efficiency of nanoparticles by cells has limited their applications. In this work, we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions. Using the same size NaYF4:20% Yb3+,2% Er3+,2% Ce3+ (the contents of rare earths elements are in molar fraction) nanoparticles as core, NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 core–shell structured nanorods (NRs) with different sizes of 60–224 nm were synthesized by thermal decomposition and hot injection method. Under excitation at 980 nm, a strong upconversion green emission (541 nm, 2H11/2 → 4I15/2 of Er3+) is observed for all samples. The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs. Under flow conditions, the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells. This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles.  相似文献   

13.
Cubic phase Tm3+/Yb3+:Y2O3 and Tm3+/Yb3+/Gd3+:Y2O3 phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm3+ to Gd3+ion.Characteristic emission bands from Tm3+ are also observed in both the phosphors....  相似文献   

14.
In this study. we have employed a facile oxalate-assisted hydrothermal approach to tailor the morphology of β-NaYF_4:Er~(3+),Yb~(3+)(NYFEY) powders through the variation of the molar ratio of oxalate ions(Oxa~(2-)) and rare earth ions(RE~(3+)) in the range of 0.5:1.1:1.2:1, 5:1. and 10:1. The obtained results show that the crystallinity, particle size and upconversion luminescence intensity of the as-synthesized NYFEY particles are gradually decreased as the Oxa~(2-):RE~(3+) molar ratio increases from 0.5:1 to 10:1. For the purpose of photoelectrochemical performance evaluation,the as-synthesized NYFEY particles with different morphologies are incorporated into the nanocrystalline TiO2 films to form the multifunctional nano-and sub-micro meter composite photoanodes of dye-sensitized solar cells(DSSCs). A short-circuit current density(Jsc) of 14.26 mA/cm~2 and power conversion efficiency(PCE) of 7.31% are obtained for DSSCs prepared with hexagonal rod-like NYFEY crystals,evidencing an increase of 29.8% compared with DSSCs prepared with only TiO_2 nanoparticles. The demonstrated synthesis approach for tailoring the morphology and size of NYFEY particles and enhancing the performance of DSSCs can also be applied for other types of solar cells.  相似文献   

15.
Eu2+/Sm3+co-doped dual-emitting Sr4La(PO4)3O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu2+/Sm3+co-doped Sr4La(PO4)3O phosphors were researched and analyzed in detail.The blue emission of Eu2+and the red emission of Sm3+can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr4La(PO4)3O:Eu2+/Sm^(3+)phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr4La(PO4)3O:Eu2+/Sm3+phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu2+and Sm3+ions.  相似文献   

16.
Effective colour modulation of upconversion emissions in lanthanide-doped nanomaterials becomes even more important for fundamental and applied research. Herein, on the one hand, by raising the content of doped Yb3+ from 10 mol% to 50 mol%, a significant increase of the red/green emission ratio from 4.0 to 68.2 is observed in K2NaScF6:Yb/Er nanocrystals. This yellow to red colour change is attributed to the increased cross relaxation between Er3+ and Yb3+ caused by the increased Yb3+ amount, 4S3/2 (Er3+) + 2F7/2 (Yb3+) → 4I13/2 (Er3+) + 2F5/2 (Yb3+). On the other hand, the upconversion green and red emission of K2NaScF6:Yb/Er (20/2 mol%) nanocrystals are intensified 10.6 and 8.8 folds, respectively, after an active shell (K2NaScF6:Yb) is epitaxially grown, which are more effective than the 7.4- and 6.4-fold enhancement from an inert shell (K2NaScF6) growth. Moreover, the shell thickness from 2.85 to 9.5 nm through controlling the molar ratio of shell-precursor to core from 1:2 to 3:1 can be easily realized. This study will provide more opportunities for the application of K2NaScF6:Yb/Ln nanoparticles in varied fields such as theranostics, photovoltaics, and photocatalysis.  相似文献   

17.
Er~(3+)/Yb~(3+) co-doped phosphate glasses(P_2O_5-Al_2O_3-BaO-BaF_2-K_2O-Er_2O_3-Yb_2O_3) with varying BaF_2 content,were prepared by a conventional melt quenching technique and their spectroscopic properties were examined through the Raman, absorption, emission and decay measurements. Raman spectra(350-1400 cm~(-1)) of the Er~(3+)/Yb~(3+) co-doped phosphate glasses with varying BaF_2 content, were recorded upon laser excitation at 785 nm. Near infrared luminescence spectra were measured in the1400-1600 nm region under 970 nm diode laser excitation and characteristic band was observed at1533 nm corresponding to ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion. The decay curves for the ~4Ⅰ_(13/2) level of Er~(3+)ion, were measured and the lifetime is found to decrease from 7.94 to 7.70 ms when BaF_2 content increases from 0 to 8 mol% and then increases up to 7.83 ms with further increase in BaF_2 content(12 mol%). The emission cross-section.lifetime and figure of merit for the ~4Ⅰ_(13/2)→~4Ⅰ_(15/2) transition of Er~(3+) ion were evaluated and compared to the other host matrices. The upconversion luminescence was measured and intense red emission was observed for all the studied samples.  相似文献   

18.
Er3+-Tm3+-Yb3+ tri-doped BaMoO4 phosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared (980 nm) and ultraviolet (380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Er3+ ions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {1G4(a) and 1G4(b)} and thermally coupled energy levels {2H11/2 and 4S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoO4 phosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermometric applications.  相似文献   

19.
Er~(3+)-modified 0.68 Pb(Mg_(1/3)Nb_(2/3))O_3-0.32 PbTiO_3(PMN-32 PT) single crystals were grown by using the flux method. The growth mechanism of the crystal and influences of Er~(3+) ions on phase structure,electrical and optical properties were investigated. Results reveal that the crystals are still pure perovskite structure with Er3+ ions doping, but lattice enlarges slightly. The coercive electric field is increased from 4.83 to 6.37 kV/cm for [100]-oriented crystals comparing to undoped PMN-32 PT single crystals.Moreover, the crystal exhibits upconversion emission properties. Green(531 and 552 nm) and red(670 nm) emission bands are recorded under the excitation of 980 nm diode laser, which correspond to the ~2 H_(11/2)→~4 I_(15/2), ~4 S_(3/2)→~4 I_(15/2) and ~4 F_(9/2)→~4 I_(15/2) transitions of Er~(3+) ions. Our results show the feasibility of using this crystal in photoelectric multifunctional devices.  相似文献   

20.
A series of Ca_(10)Na(PO_4)_7:Ce~(3+)/Tb~(3+)/Mn~(2+)(CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+)) phosphors with high brightness were synthesized by high-temperature solid-state method. X-ray diffraction(XRD), scanning electron microscopy(SEM), diffuse reflectance spectra(DRS), photo luminescence(PL) spectra, luminescence decay curves and thermally stability were performed to characterize the as-prepared samples. For Ce~(3+)-doped samples, an intense and broad band emission is present under 265 nm excitation. When Ce~(3+) and Tb~(3+)are codoped, energy transfer(ET) process from Ce3+ to Tb3+ is demonstrated with electric dipole-dipole interaction. The internal and external quantum efficiencies(QEs) of CNPO:0.15 Ce~(3+), 0.04 Tb~(3+), 0.005 Mn~(2+)are measured to 76.79% and 54.11% under 265 nm excitation and temperature-dependent PL intensity can remain 51.78% at 150 ℃ of its initial intensity at 25 ℃. It is indicated that single-phased white lightemitting CNPO:Ce~(3+)/Tb~(3+)/Mn~(2+) phosphor can serve as a promising phosphor for illumination devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号