首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the development of polymer carpets as active devices for micro‐ and nanotechnology, a control of the polymer carpet morphology and especially control of the stimulus responsive polymer brush is needed. Here, we report on the first example for the fabrication of patterned polymer carpets. On a two‐dimensional framework of fully crosslinked and chemically patterned nanosheets, polymer brushes of styrene and 4‐vinyl pyridine were grafted by self‐initiated surface photopolymerization and photografting (SIPGP). It was found that polymer grafting by SIPGP occurred over the entire nanosheets but with a preferred grafting on the amino functionalized nanosheet areas. This results in continuous polymer carpets with an intact nanosheet framework but with amplification of the chemical patterning into a three dimensional topography of the grafted polymer brush. In the case of negative patterned nanosheets, the patterned carpet could be prepared as freestanding ultrathin membranes. Furthermore, swelling experiments with poly(4‐vinyl pyridine) carpets showed that the patterns induces a directional buckling of the flexible polymer carpet. This may open the possibility of the development of micro‐ or nanoactuator devices with anisotropic responds upon environmental changes.  相似文献   

2.
For the development of polymer carpets as active devices for micro- and nanotechnology, a control of the polymer carpet morphology and especially control of the stimulus responsive polymer brush is needed. Here, we report on the first example for the fabrication of patterned polymer carpets. On a two-dimensional framework of fully crosslinked and chemically patterned nanosheets, polymer brushes of styrene and 4-vinyl pyridine were grafted by self-initiated surface photopolymerization and photografting (SIPGP). It was found that polymer grafting by SIPGP occurred over the entire nanosheets but with a preferred grafting on the amino functionalized nanosheet areas. This results in continuous polymer carpets with an intact nanosheet framework but with amplification of the chemical patterning into a three dimensional topography of the grafted polymer brush. In the case of negative patterned nanosheets, the patterned carpet could be prepared as freestanding ultrathin membranes. Furthermore, swelling experiments with poly(4-vinyl pyridine) carpets showed that the patterns induces a directional buckling of the flexible polymer carpet. This may open the possibility of the development of micro- or nanoactuator devices with anisotropic responds upon environmental changes.  相似文献   

3.
Two‐photon crosslinking of polymers (2PC) is proposed as a novel method for the fabrication of freestanding microstructures via two‐photon lithography. During this process in the confocal volume, two‐photon absorption leads to (formal) C,H‐insertion reactions, and consequently to a strictly localized crosslinking of the polymer. To achieve this, the polymer is coated as a solvent‐free (glassy) film onto an appropriate substrate, and the desired microstructure is written by 2PC into this glass. In all regions outside of the focal volume where no two‐photon process occurs, the polymer remains uncrosslinked and can be washed away during a developing process. Using a self‐assembled monolayer containing the same photoreactive group allows covalent attachment of the forming freestanding structures to the substrate, and thus guarantees an improved stability of these structures against shear‐induced detachment. As the two photon process is carried out in the glassy state, in a simple way, multilayer structures can be used to write structures having a varying chemical composition perpendicular to the surface. As an example, the 2PC process is used to build a structure from both protein‐repellent and protein‐adsorbing polymers so that the resulting 3D structure exhibits spatially controlled protein adsorption.  相似文献   

4.
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self‐assembly of semiconducting single walled carbon nanotubes (s‐SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s‐SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self‐assembly of the selected s‐SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s‐SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s‐SWNT purity. Field‐effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self‐assembly of the SWNTs/thiolated‐polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm2 V?1 s?1), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents.  相似文献   

5.
2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry‐breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side. Such asymmetric metallic structures lead to distinct wetting and optical properties as well as surface‐enhanced Raman scattering (SERS) effects. In particular, the SERS enhancement of the nanocube side is about 20‐fold of that of the nanostar side, likely due to the combined “hot spot + lightening‐rod” effects. This is nearly 700‐fold of SERS enhancement as compared with the symmetric nanocube superlattices without Janus structures.  相似文献   

6.
Heterogeneous membranes composed of asymmetric structures or compositions have enormous potential in sensors, molecular sieves, and energy devices due to their unique ion transport properties such as ionic current rectification and ion selectivity. So far, heterogeneous membranes with 1D nanopores have been extensively studied. However, asymmetric structures with 3D micro‐/nanoscale pore networks have never been investigated. Here, a simple and versatile approach to low‐costly fabricate hydrogel/conducting polymer asymmetric heterogeneous membranes with electro‐/pH‐responsive 3D micro‐/nanoscale ion channels is introduced. Due to the asymmetric heterojunctions between positively charged nanoporous polypyrrole (PPy) and negatively charged microscale porous hydrogel poly (acrylamide‐co‐acrylic acid) (P(AAm‐co‐AA)), the membrane can rectify ion transmembrane transport in response to both electro‐ and pH‐stimuli. Numerical simulations based on coupled Poisson and Nernst–Plank equations are carried out to explain the ionic rectification mechanisms for the membranes. The membranes are not dependent on elaborately fabricated 1D ion channel substrates and hence can be facilely prepared in a low‐cost and large‐area way. The hybridization of hydrogel and conducting polymer offers a novel strategy for constructing low‐cost, large‐area and multifunctional membranes, expanding the tunable ionic rectification properties into macroscopic membranes with micro‐/nanoscale pores, which would stimulate practical applications of the membranes.  相似文献   

7.
The propagation control of chemical waves via a pentagonal patterned structure in a self‐oscillating polymer brush composed of N‐isopropylacrylamide and a metal catalyst for the Belousov–Zhabotinsky (BZ) reaction is reported. The patterned self‐oscillating polymer brush is prepared by combining surface‐initiated atom transfer radical polymerization and maskless photolithography. Surface modification is confirmed by X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, 3D measuring laser microscopy, and fluorescence microscopy. The polymer brush patterns are fabricated with gaps between the pentagonal regions, and investigations on the effect of the gap distance on the BZ reaction reveal that at the appropriate distance, chemical waves propagate across the array from the plane to the corner between the patterns. Unidirectional control is achieved not only in the 1D array, but also in a 2D curved array. This patterned self‐oscillating polymer brush is a novel and advantageous approach for creating an autonomous dynamic soft interface.  相似文献   

8.
Stretchable conductors are essential components of wearable electronics. However, such materials typically sacrifice their electronic conductivity to achieve mechanical stretchability and elasticity. Here, the nanoconfinement and air/water interfacial assembly is explored to grow freestanding mechanical endurance conducting polymer nanosheets that can be stretched up to 2000% with simultaneously high electrical conductivity, inspired by kirigami. Such stretchable conductors show remarkable electronic and mechanical reversibility and reproducibility under more than 1000 cycle durability tests with 2000% deformability, which can be accurately predicted using finite element modeling. The conductivity of nanoconfined freestanding conductor nanosheets increases by three orders of magnitude from 2.2 × 10?3 to 4.002 S cm?1 is shown, due to the charge‐transfer complex formation between polymer chain and halogen, while the electrical conductance of the stretchable kirigami nanosheets can be maintained over the entire strain regime. The nanoconfined polymer nanosheets can also act as a sensor capable of sensing the pressure with high durability and real‐time monitoring.  相似文献   

9.
Although traditional materials discovery has historically benefited from intuition‐driven experimental approaches and serendipity, computational strategies have risen in prominence and proven to be a powerful complement to experiments in the modern materials research environment. It is illustrated here how one may harness a rational co‐design approach—involving synergies between high‐throughput computational screening and experimental synthesis and testing—with the example of polymer dielectrics design for electrostatic energy storage applications. Recent co‐design efforts that can potentially enable going beyond present‐day “standard” polymer dielectrics (such as biaxially oriented polypropylene) are highlighted. These efforts have led to the identification of several new organic polymer dielectrics within known generic polymer subclasses (e.g., polyurea, polythiourea, polyimide), and the recognition of the untapped potential inherent in entirely new and unanticipated chemical subspaces offered by organometallic polymers. The challenges that remain and the need for additional methodological developments necessary to further strengthen the co‐design concept are then presented.  相似文献   

10.
Prospective application fields of organic functional polymers, polymer actuators and transistors The paper gives a short survey of prospective high tech products in which conducting polymers and other polymers with special electronic properties will be applied. Such products are, for example, polymer actuators, organic field effect transistors (OFET's) and integrated plastic circuits, organic light emitting diodes (OLED's), plastic solar or photovoltaic cells, membranes for fuel cells, polymer batteries and various polymer sensors. It will be informed about structures and properties of intrinsic conducting polymers and more in detail on electro‐chemo‐mechanical polymer actuators and on polymeric field effect transistors.  相似文献   

11.
Precious metals such as palladium (Pd) and platinum (Pt) are marvelous materials in the fields of electronic and catalysis, but they are tapering day by day. Zr(IV)‐based metal–organic frameworks (MOFs) are competent for their recovery, notably in harsh environments, while the general powder form limits their practical application. Porous MOF‐based membranes with ultraefficient metal ion permeation, strong stability, and high selectivity are, therefore, strikingly preferred. Herein, a set of polymeric fibrous membranes incorporated with the UiO‐66 series are fabricated; their adsorption/desorption capabilities toward Pd(II) and Pt(IV) are evaluated from strongly acidic solutions; and the MOF–polymer compatibilities are investigated. Polyurethane (PU)/UiO‐66‐NH2 showed strong acid resistance and high chemical stability, which are attributable to strong π–π interactions between PU and MOF nanoparticles with a high configuration of energy. The as‐fabricated MOF membranes show extremely good adsorption/desorption performances without ruptures/coalitions of nanofibers or leak of MOF nanoparticles, and successfully display the efficacy in a gravity‐driven or even continuous‐flow system with good recycle performance and selectivity. The as‐fabricated MOF membranes set an example of potential MOF–polymer compatibility for practical applications.  相似文献   

12.
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man‐made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli‐responsive materials; these “smart” materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli‐responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self‐regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli‐responsive materials as the basic building blocks.  相似文献   

13.
Dip‐pen nanodisplacement lithography (DNL) is a versatile scanning probe‐based technique that can be employed for fabricating ultrafine 3D polymer brushes under ambient conditions. Many fundamental studies and applications require the large‐area fabrication of 3D structures. However, the fabrication throughput and uniformity are still far from satisfactory. In this work, the molecular displacement mechanism of DNL is elucidated by systematically investigating the synergistic effect of z extension and contact time. The in‐depth understanding of molecular displacement results in the successful achievement of ultrafine control of 3D structures and high‐speed patterning at the same time. Remarkably, one can prepare arbitrary 3D polymer brushes on a large area (1.3 mm × 1.3 mm), with <5% vertical and lateral size variations, and a patterning speed as much as 200‐fold faster than the current state‐of‐the‐art.  相似文献   

14.
The introduction of stimuli‐responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer‐based stimuli‐responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli‐responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli‐responsive catalytic systems including thermoresponsive, pH‐responsive, chemo‐mechano‐chemical, ionic strength‐responsive, and dual‐responsive, are reviewed in terms of their nanoreactors and mechanisms.  相似文献   

15.
Self‐organized nano‐ and microstructures of soft materials are attracting considerable attention because most of them are stimuli‐responsive due to their soft nature. In this regard, topological defects in liquid crystals (LCs) are promising not only for self‐assembling colloids and molecules but also for electro‐optical applications such as optical vortex generation. However, there are currently few bottom‐up methods for patterning a large number of defects periodically over a large area. It would be highly desirable to develop more effective techniques for high‐throughput and low‐cost fabrication. Here, a micropixelated LC structure consisting of a square array of topological defects is stabilized by photopolymerization. A polymer network is formed on the structure of a self‐organized template of a nematic liquid crystal (NLC), and this in turn imprints other nonpolymerizable NLC molecules, which maintains their responses to electric field and temperature. Photocuring of specific local regions is used to create a designable template for the reproducible self‐organization of defects. Moreover, a highly diluted polymer network (≈0.1 wt% monomer) exhibits instant on–off switching of the patterns. Beyond the mere stabilization of patterns, these results demonstrate that the incorporation of self‐organized NLC patterns offers some unique and unconventional applications for anisotropic polymer networks.  相似文献   

16.
A new classification on the different types of fullerene‐containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water‐soluble and biodegradable C60‐polymers are discussed first, followed by polyfullerene‐based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C60‐based donor‐acceptor (D–A) polymers. Since their application in photovoltaics D–A polymers are among the most realistic applications of fullerenes in the so‐called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented. The last topics disccused relate to supramolecular aspects that are in involved in C60‐polymer systems and in the self‐assembly of C60‐macromolecular structures, which open a new scenario for organizing, by means of non‐covalent interactions, new supramolecular structures at the nano‐ and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.  相似文献   

17.
Micropatterned polymer‐supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super‐resolved single‐molecule tracking and localization microscopy. Free diffusion of transmembrane proteins reconstituted into micropatterned PSM is demonstrated by FRAP and by single‐molecule tracking. By exploiting the confinement of diffusion within micropatterned PSM, the diffusion and interaction dynamics of individual transmembrane receptors are quantitatively resolved.  相似文献   

18.
Organic polymers as functional materials for chemical sensors The function of many chemical sensors for measurements in liquids and in gases with ambient temperature is based on the combination of a transducer with organic membranes. These membrans determine essential sensor properties as selectivity, sensitivity and response characteristics. In addition they protect the detection system against external influences. Therefore the selection and synthesis of polymer membranes are an essential constituent of the sensor investigation and sensor development. Electrical, optical and biological properties of the polymers are important in this case. A survey of the materials used in the remote sensing is given. Of special interest to the sensor investigation are in last time intrinsic conducting polymers (ILP) whose properties opened new possibilities of the sensor development. With the help of an electrochemical pH glass electrode with inner solid contact it is shown that polypyrrole can be used as a material for a long‐lived inner solid contact and as substitute for inner secondary reference electrode. Practice tests confirm the suitability of this polymer material. Aspects of the transport mechanism of electrical charges through the boundary surface conducting polymer | glass are discussed.  相似文献   

19.
Sodium‐ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon‐networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well‐welded on 3D‐crosslinked carbon‐networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as‐prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm?2 at 0.25 mA cm?2) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all‐flexible sodium‐ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm?2 at 0.3 mA cm?2 and superior energy density of 144 Wh kg?1), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.  相似文献   

20.
This work reports the facile synthesis of nonaqueous zinc‐ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)‐light‐induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10?3 S cm?1. The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite‐free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV‐polymerization‐assisted in situ process is developed to produce ZIP (abbreviated i‐ZIP), which is adopted for the first time to fabricate a nonaqueous zinc‐metal polymer battery (ZMPB; VOPO4|i‐ZIP|Zn) and zinc‐metal hybrid polymer supercapacitor (ZMPS; activated carbon|i‐ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc‐based energy storage technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号