首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the deactivations and initiations of gas phase polymerizations of 1,3‐butadiene have been achieved by Monte Carlo simulation. Initiation and deactivation control the reaction before and after the peak of the polymerization rate, respectively. The influence of polymerization temperature has been studied. Monte Carlo modeling of polymerization kinetics and mechanism was confirmed by the agreement of experimental data and simulation results of polymerizations run with a temporary evacuation of monomer. The balance of catalysts and active chains is established by both initiation and chain transfer reactions with cocatalyst, which causes a ‘pseudo‐stability’ stage. © 2003 Society of Chemical Industry  相似文献   

2.
1,3‐Bis[(1‐alkoxycarbonyl‐2‐vinylcyclopropane‐1‐yl)carboxy]benzenes 1 [RO: CH3O (a), C2H5O (b)] were synthesized by the esterification of the corresponding 1‐alkoxycarbonyl‐2‐vinylcyclopropane‐1‐carboxylic acids with resorcinol. The structure of the new vinylcyclopropanes was confirmed by elemental analysis and infrared (IR), 1H nuclear magnetic resonance (1H‐NMR), and 13C nuclear magnetic resonance (13C‐NMR) spectroscopy. The radical polymerization of difunctional 2‐vinyl‐cyclopropanes in bulk with 2,2′‐azoisobutyronitrile (AIBN) results in hard, transparent, crosslinked polymers. During the bulk polymerization of the crystalline bis[(1‐methoxycarbonyl‐2‐vinylcyclopropane‐1‐yl)carboxy]benzene 1a, an expansion in volume of about 1% took place. The radical solution polymerization of 1a resulted in a soluble polymer with pendant 2‐vinylcyclopropane groups. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1775–1782, 1999  相似文献   

3.
The gas phase polymerization of 1,3‐butadiene (Bd), with supported catalyst Nd(naph)3/Al2Et3Cl3/Al(i‐Bu)3 or/and Al(i‐Bu)2H, was investigated. The polymerization of Bd with neodymium‐based catalysts yielded cis‐1,4 (97.2–98.9%) polybutadiene with controllable molecular weight (MW varying from 40 to 80 × 104 g mol?1). The effects of reaction temperature, reaction time, Nd(naph)3/Al(i‐Bu)3 molar ratio, and cocatalyst component on the catalytic activity and molecular weight of polymers were examined. It was found that there are two kinds of active sites in the catalyst system, which mainly influenced the MW and molecular weight distribution of polybutadiene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1945–1949, 2004  相似文献   

4.
6‐Bromo‐2‐iminopyridine cobalt(II) complexes bearing different imine‐carbon substituents ( Co1 – Co7 ) were synthesized and subsequently employed for 1,3‐butadiene polymerization. All the complexes were identified using Fourier transform infrared spectra and elemental analysis, and complexes Co1 and Co3 were further characterized using single‐crystal X‐ray diffraction analysis, demonstrating they adopted distorted trigonal bipyramidal and tetrahedral geometries, respectively. Activated by methylaluminoxane, these complexes exhibited high cis‐1,4 selectivity, and the activity was highly dependent on the substituent at the imine‐carbon position of the ligand. Addition of PPh3 to the polymerization systems could enhance the catalytic activity and simultaneously switched the selectivity from cis‐1,4 to cis‐1,2 manner. On the basis of the obtained results, a plausible mechanism involving the regulation of selectivity and activity is proposed. © 2019 Society of Chemical Industry  相似文献   

5.
1,2‐Butadiene is shown to be a chain terminating/transferring agent in butyllithium‐initiated diene polymerization. The influence of 1,2‐butadiene on the anionic copolymerization of 1,3‐butadiene and styrene is investigated using n‐butyllithium as initiator and tetrahydrofuran or N,N,N′,N′‐tetramethylethylenediamine as polar additive. A decrease of copolymerization rate is observed on the addition of 1,2‐butadiene. On introducing 1,2‐butadiene, the number average molecular weight (Mn ) decreases and the molecular weight distribution broadens. The vinyl content of copolymer increases slightly with an increase of 1,2‐butadiene. During the copolymerization, 1,2‐butadiene in the presence of a high ratio of polar additives to n‐butyllithium greatly decreases the copolymerization rate, resulting in a lower value of Mn and a narrower molecular weight distribution than that found for a low ratio of polar additives to n‐butyllithium. This evolution can be explained by the base‐catalyzed isomerization of 1,2‐butadiene to form 1‐butylene in the presence of polar additives. With an increasing amount of 1,2‐butadiene, the vulcanized rubber exhibits an increased rolling resistance and a reduced wet skid resistance owing to the decrease of coupling efficiency. These results further indicate the activity of alkynyllithium derivatives produced by the reaction of alkyllithium and 1‐butyne is less than that of the alkyllithium. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
An amine‐ester derivative of isoeugenol was prepared in three steps. This amine‐ester was converted to diazonium salt and subsequently was reacted with 2‐naphthol and a novel isoeugenol ester‐azo derivative as a new monomer was obtained in quantitative yield. This monomer was characterized by high‐field 1H‐NMR, IR, and elemental analysis and then was used for the preparation of model compound and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione was allowed to react with this new monomer. The reaction was very fast and gave only one double adduct by Diels–Alder and ene pathways in excellent yield. The polymerization reactions of novel monomer with bistriazolinediones [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane] were carried out in N,N‐dimethylacetamide at room temperature. The reactions were exothermic, fast, and gave novel heterocyclic polyimides by repetitive Diels–Alder‐ene polyaddition reactions. Some structural characterization and physical properties of these novel heterocyclic polyimides are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1942–1951, 2003  相似文献   

7.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The polymerization of butadiene (Bd) with chromium(III) acetylacetonato [Cr(acac)3]‐trialkylaluminum (AlR3) or methylaluminoxane (MAO) catalysts was investigated for the synthesis of 1,2‐poly(Bd). The polymerization of Bd was found to proceed with Cr(acac)3‐AlR3 (R‐Me, Et, i‐Bu) catalysts to give poly(Bd) with a high 1,2‐vinyl content, but highly isotactic 1,2‐poly(Bd) was not synthesized. The Cr(acac)3‐MAO catalyst gave a polymer consisting of low 1,2 units. The effects of the Al/Cr mole ratios on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were observed. With an increase of Al/Cr mole ratios, the isotactic (mm) content of the polymer increased but the 1,2‐vinyl contents decreased. The effects of the aging time and temperatures of the catalysts on the polymerization of Bd with the Cr(acac)3‐AlR3 catalysts were also observed, and the lower polymerization temperature and the prolonged aging time were favored to produce the 1,2‐vinyl structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1621–1627, 2000  相似文献   

9.
A siloxane‐containing 2‐vinylpyridine–styrene–butadiene copolymer (PSBR/WG) was prepared from a 2‐vinylpyridine–styrene–butadiene copolymer (PSBR) latex and water glass. The water glass was added slowly, with stirring, to the PSBR latex. The latex mixture was stirred for 3 h at room temperature, and then, it was coagulated with 1N sulfuric acid producing a sulfate of PSBR with siloxane. The physical properties, such as the filling and stiffening effects of the hybrid polymer, and the vulcanizates were improved. An important advantage of this system is that it is possible to prepare the hybrid polymer simply, and the sodium ions formed in the reaction can also be easily removed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 891–899, 2006  相似文献   

10.
Polybutadiene‐ol was synthesized by solution radical polymerization of 1,3‐butadiene in the presence of hydrogen peroxide as initiator and 2‐propanol as solvent. The ratio of initiator to monomer molar concentration, [I0]/[M0], was varied while temperature, reaction time and the type and amount of solvent were kept constant. The effects on the Mn; Mw; Mv; PDI, OH‐number and functionality of the synthesized polyols were studied. By taking several samples during a polymerization batch and analyzing them, the time of reaction was chosen as 100 min, after which the PDI changed dramatically. Mn decreased exponentially with increasing [I0]/[M0] according to the relationship Mn = 565.55 ([I0]/[M0])?0.7553. The decrease observed in Mw gradually levelled off with increasing [I0]/[M0] and molecular weight distribution broadened at larger values of [I0]/[M0]. The OH‐number increases with [I0]/[M0]. In addition to the number‐average molecular weight, functionality is dependent on the number of hydroxyl‐terminated chain radicals in the reaction medium. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
The addition of poly(1,3‐cyclohexadiene) (PCHD) carbanion to fullerene‐C60 (C60) was examined using poly(1,3‐cyclohexadienyl)lithium (PCHDLi), PCHDLi/1,4‐diazabicyclo[2,2,2]octane (DABCO), and PCHDLi/N,N,N′,N′‐tetramethylethylenediamine (TMEDA). The reactivity of PCHD carbanions was in the order of PCHDLi > PCHDLi/DABCO > PCHDLi/TMEDA, regardless of the polymer main chain structure. PCHDLi, PCHDLi/DABCO, and PCHDLi/TMEDA in toluene formed σ‐structures, σ‐ and π‐structures, and π‐structures, respectively. The degree of localization on the terminal carbanion was a main factor for control of this addition reaction. In addition, all 1,2‐cyclohexadiene (1,2‐CHD) unit sequences contributed to preventing the addition reaction. That is, large steric hindrance of the polymer main chain was another important factor to control the addition reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
An asymmetric synthesis of elusive chiral cyclopentadienes has been developed by gold(I)‐catalyzed alkoxycyclization of 1,3‐dien‐5‐ynes. The application of these substrates in completely diastereoselective Diels–Alder cycloaddition reactions, which can be carried out in one pot from achiral 1,3‐dien‐5‐ynes, allows the preparation of highly functionalized products bearing five stereogenic centers with high enantiomeric excesses.  相似文献   

13.
A series of new polyimides containing s‐triazine rings have been synthesized via Diels–Alder intermolecular polymerization of 2,6‐bis(2‐furanylmethylimino)‐4‐isopropoxy‐1,3,5‐triazine with various bis(maleimide)s. All the poly(imino‐s‐triazine imide)s were characterized by elemental analyses, FTIR spectral studies, number average molecular weight ( M n) by non‐aqueous conductometric titration and thermogravimetry. Glass‐fibre reinforced composites were prepared via an in situ Diels–Alder intermolecular reaction between 2,6‐bis(2‐furanylmethylimino)‐4‐isopropoxy‐1,3,5‐triazine and various bis(maleimide)s. The composites were characterized for chemical resistivity and mechanical properties. © 2003 Society of Chemical Industry  相似文献   

14.
Controlled radical double ring‐opening polymerization of 2‐methylene‐1,4,6‐trioxaspiro[4,4]nonane (MTN) has been achieved with tert‐butyl perbenzoate (TBPB) as initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) at 125 °C. The molecular weight polydispersity of the polymers is obviously lower than that of polymers obtained by conventional procedures. As the [TEMPO]/[TBPB] molar ratio increased, the polydispersity decreased and a polydisperty as low as 1.2 was obtained at high TEMPO concentration. With the conversion of the monomer increasing, the molecular weight of the polymers turned higher and a linear relationship between the Mw and the monomer conversion was observed. The monomer conversion, however, did not exceed 30 %. © 2000 Society of Chemical Industry  相似文献   

15.
The effect of different aluminum‐based cocatalysts (MAO, pMAO, and TMA) on butadiene (Bd) polymerization catalyzed by VO(P204)2 was investigated. The bimodal dependence of the polymer yield on the [MAO]/[V] molar ratio was revealed, and an highest polymer yield was achieved at a rather low [MAO]/[V] molar ratio ([MAO]/[V] = 13). The microstructures of the resulting poly(Bd)s were also significantly influenced by the ratio. In the TMA or pMAO system, the polymer yields were also very sensitive to the [Al]/[V] molar ratio. However, the microstructures of the resulting poly(Bd)s were almost independent of the ratio. In relation to the microstructures of poly(Bd)s obtained by the MAO and TMA systems at various temperatures, the 1,2‐unit contents were found to be the most abundant microstructure for both systems. In the pMAO system, the trans‐1,4‐units were the most abundant. The results of the additions of Lewis bases (THF and TPP) into Bd polyerization system comfirmed the existing of the two types of the reactions of VO(P204)2‐MAO catalyst and had the polymerization process controlled to some extent. The different thermal behaviors of these catalytic systems also show that multiple types of active centers were formed during the reaction between VO(P204)2 and MAO. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Poly(1,3‐thiazol‐2‐yl‐carbomoyl) methyl methacrylate [poly(TCMMA)] is prepared in dimethyl sulfoxide using 2,2′‐azobisisobutyronitrile as an initiator at 60°C. Poly(TCMMA) is characterized by IR and 1H‐NMR spectroscopic techniques. Cadmium(II), copper(II), and nickel(II) chelates of poly(TCMMA) were synthesized. An elemental analysis of the polychelates suggests a metal/ligand ratio of 1:2. The polychelates are further characterized by IR and magnetic susceptibility measurements. The thermal properties of the polymer and metal chelates are also discussed. The molecular weights of the poly(TCMMA) are determined by the gel permeation chromatography technique. The antimicrobial activities of the polymer and metal chelates are tested against Staphylococcus aureus COWAN I (bacteria), Escherichia coli ATCC 25922 (bacteria), Listeria monocytogenes SCOTTA (bacteria), Bacillus subtilis LMG (bacteria), Enterobacter aeroginosa CCM 2531 (bacteria), Klebsiela pneumania FMCS (bacteria), Candida albicans CCM 314 (Mayo yeast), and Saccharamyces cerevisiae UGA 102 (Mayo yeast). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3244–3251, 2003  相似文献   

17.
Atom transfer radical polymerization has been used to successfully synthesize polybutadiene. This was achieved by using MoO2Cl2/triphenyl phosphine as the catalyst and the various organic halide compounds such as methyl‐2‐chloropropionate, CCl4, 1,4‐dichloromethyl benzene, 1‐phenylethyl chloride, and benzyl chloride as initiators. The monomer conversion increased up to 50% with polymerization time. The polydispersity indices of the polymers were as high as above 1.5. However, the polymerizations were controlled and the polydispersity indices of the polymers were less than 1.5 throughout the polymerizationin reverse atom transfer radical polymerization. The chemical structure of the polymer obtained was characterized by 1HNMR and FTIR. The valency states of molybdenum in this reactive system were detected by UV–vis spectra. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3517–3522, 2007  相似文献   

18.
Studies of the thermally initiated polymerization of 4‐methylstyrene using alkylperoxide in conjunction with cobalt and tertiary amine catalysts are reported. Addition of cobalt salts leads to a facile low temperature initiation of the polymerization process. The polymerization process was investigated using differential scanning calorimetry [DSC] and vibrating probe rheological measurements. Color changes which occur when the cobalt complex and peroxide are combined were studied using UV‐visible spectroscopy. The kinetics of polymerization was investigated using two different cobalt complexes. The initiation step in the polymerization is the conversion of the cobalt (II) to cobalt (III). The presence of the tertiary amine does not affect the oxidation state of the cobalt complex. The cobalt (III) complex gives a better rate of conversion than the cobalt (II) complex. The polymerization process is discussed in terms of redox reaction between the cobalt complex and the alkyperoxide. At low temperatures, the rate of conversion obeys simple Arrhenius kinetics. At higher temperatures the effects of gelation and catalysts inhibition influence the polymerization process. The polymerization process is sensitive to the level of available oxygen during the initiation step and inhibition by aldehyde is observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Compositions of hexamethoxymethyl melamine (HMMM)–ether polyol and acrylate can be cured by a hybrid polymerization comprising condensation polymerization and free‐radical polymerization, in the presence of a latent acid catalyst at high temperature. It was found that the initiating free radical was derived from the decomposition of hydroperoxides, which was formed by the oxidation of active methylene groups catalyzed by HMMM. It was also found that strong acid could accelerate the free‐radical polymerization in the hybrid system. To make the formulations more flexible, the activities of different types of methylene groups were investigated and two compounds with more active methylene groups and hydroxyl were synthesized, characterized, and used as crosslinker–initiators in the hybrid polymerization system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1195–1200, 2001  相似文献   

20.
The heterofunctional condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane with dihydroxydiphenylsilane at various ratios of initial compounds in the presence of amines was carried out, and α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with various degrees of condensation were obtained. Corresponding block copolymers were obtained by heterofunctional polycondensation of synthesized α,ω‐dihydroxy(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane oligomers with α,ω‐dichlorodimethylsiloxanes in the presence of amines. Thermogravimetry, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray analysis were carried out on the synthesized block coplymers. Differential scanning calorimetry and wide‐angle X‐ray studies of these copolymers showed that their properties were determined by the ratio of the lengths of the flexible linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane)‐diphenylsiloxane fragments in the main macromolecular chain. Two‐phase systems were obtained with specific flexible and rigid fragment length values in synthesized block copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3462–3467, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号