首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.
Figure
A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution  相似文献   

2.
A novel [12]aneN3-based BODIPY sensor 1 can be applied in the sequential recognition of Cu2 and ADP in aqueous solution and living cells with high selectivity and sensitivity  相似文献   

3.
Guo LQ  Yin N  Nie DD  Gan JR  Li MJ  Fu FF  Chen GN 《The Analyst》2011,136(8):1632-1636
A simple, selective and sensitive turn-on fluorescent sensor for the detection of mercury(II) ion was developed using Sybr Green I as the signal reporter and SWCNTs as the quencher. Due to the affinity of SWCNTs towards ssDNA and organic dye, Sybr Green I, thymine-rich ssDNA and SWCNTs could form a self-assembly of three components, resulting in fluorescence quenching. Upon addition of another thymine-rich ssDNA and mercury(II) ion, formation of dsDNA via T-Hg(2+)-T base pairs enabled Sybr Green I to intercalate into the dsDNA, resulting in the restoration of fluorescence. SWCNTs were found to reduce the background signal and improve the analytical sensitivity. A linear relationship between the fluorescence intensity and the concentration of mercury(II) ion was observed in the range of 20-1250 nM (R = 0.9985) with a detection limit of 7.9 nM. The proposed method was applied to detect mercury(II) ion in tap water samples with good results.  相似文献   

4.
A carbazole-thiosemicarbazone-Hg(2+) ensemble-based fluorogenic probe for detection of iodide in aqueous media is reported. The first fluorescent sensor for iodide anions was constructed based on the displacement approach. An 'ensemble' is able to selectively sense iodide over other anions followed by the release of 9-(butane-1-yl)-9H-carbazole-3,6-dihydrazinecarbothioamide to give a remarkable change of fluorescence turn-on signal at pH 7.4 under aqueous media. The practical use of an 'ensemble' was demonstrated by its application to the detection of iodide in the living cells.  相似文献   

5.
A new type of fluorescent sensor has been developed from a perylene based molecule, N,N'-dideoxythymidine-3,4,9,10-perylene-tetracarboxylic diimide (TT-PTCDI); the strong, highly selective binding between the thymine ligand (T) and Hg2+ ion enables efficient sensing of mercury ions based on a fluorescence quenching mechanism, which is primarily caused by metal-coordination induced molecular aggregation.  相似文献   

6.
The selective and sensitive detection of biothiols; cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous solutions is of considerable importance because of their pivotal roles in maintaining the reducing environment in the cells. This study describes a strategy for the determination of biothiols based on the PDI/Met‐Hg2+complex platform. We designed and fabricated methionine modified perylene diimide molecule as a selective sensing probe for Hg2+ ions in aqueous solutions ( PDI/Met‐Hg 2+). The complex between perylene bisimide derivative ( PDI/Met) and Hg2+ was investigated and it demonstrated turn‐on fluorescence response for the detection of the biological thiols. Besides, PDI/Met displayed fluorescence quenching response in the presence of mercury ions and the emission intensity of PDI/Met‐Hg2+ was recovered after transferring biothiols (Cys, Hcy, and GSH). Thus, PDI/Met could be utilized as a fluorescent chemosensor for the sequential recognition of mercury ions and biological thiols.  相似文献   

7.
The synthesis and photophysical properties of a novel fluorescent sensor are described. The phosphorus-selenium moiety allowed a selective mercury salt complexation, followed by the formation of phosphane oxide, which leads to a turn-on of the fluorescence. The sensibility and selectivity toward mercury cations were evaluated (0.18 ppb) and found to be in complete adequation with the targeted level of the World Health Organization, which makes the dye an efficient dosimeter for mercury cations.  相似文献   

8.
In this study, a colorimetric and fluorescent chemosensor for mercury ions (Hg2+) was developed. Cationic polydiacetylene (PDA) vesicles with a quaternary ammonium cation and iodide as a counterion show a blue-to-red color transition; the color change is accompanied by a fluorescence enhancement in selective response to Hg2+ ions because of a perturbation of the ene–yne conjugated backbone induced by counterion exchange. It allows for selective detection of Hg2+ with the naked eye and the sensor is used to determine Hg2+ concentrations in tap water samples.  相似文献   

9.
A novel fluorescent probe for the copper(II) ion in mixed aqueous media, based on fluorescence quenching mechanism with noticeable color change from light to dark yellow, was designed and synthesized. It also exhibited high selectivity for acetate in acetonitrile over other common anions in the near infrared region (NIR) accompanied with exciting color changes from light yellow to pink. Hence sensor 1 ascertains its dual chemosensing ability toward Cu(II) and acetate ions as evidenced by competitive experiments.  相似文献   

10.
Li Q  Peng M  Li H  Zhong C  Zhang L  Cheng X  Peng X  Wang Q  Qin J  Li Z 《Organic letters》2012,14(8):2094-2097
For the first time, a new near-IR "turn-on" fluorescent chemosensor with high selectivity for Hg(2+) ions was designed according to the twisted intramolecular charge transfer (TICT) mechanism. The selective fluorescence enhancement effect can be optimized by modulating the solvent systems. And this naphthalenedimide-based sensor with long wavelength absorption and emission can be used to image intracellular Hg(2+) ions in living Hela cells.  相似文献   

11.
基于无荧光的螺环结构与具有荧光的开环酰胺的平衡反应,本文合成了一个能在水基的缓冲溶液中选择性地识别Cu2+的罗丹明衍生物FD2.当在HEPES缓冲溶液中加入10当量的Cu2+时,FD2的单光子激发荧光和双光子激发荧光的强度均表现出明显的增强;更为重要的是,运用双光子荧光显微技术可以选择性地对活细胞内Cu2+进行成像.  相似文献   

12.
Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn‐on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert‐Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride‐mediated cleavage of the Si? O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993‐5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells.  相似文献   

13.
A naphthalimide-based fluorescent probe, NPQ, that contains a novel receptor was successfully developed. NPQ exhibited "turn-on" fluorescence and excellent selectivity toward Ag(+) in the presence of various other metal ions in aqueous solution. A series of control compounds were designed and synthesized in order to explore the photoinduced electron transfer (PET) quenching mechanism of NPQ and binding mode of NPQ with Ag(+). Moreover, with the NPQ-Ag(+) complex, I(-) was easily selectively recognized by a marked fluorescence quenching. The live cell imaging experiments demonstrate that NPQ can be used as a fluorescent probe for monitoring Ag(+) in living cells.  相似文献   

14.
《Analytical letters》2012,45(9):1714-1735
Abstract

Highly selective poly(vinyl chloride) (PVC) membrane electrode based on recently synthesized mercury complex i.e., phenyl mercury (II) (2‐mercaptobezothiozolate) (PMMBT) as new carrier for iodide‐selective electrode by incorporating the membrane ingredients on the surface of graphite electrode are reported. The effect of various parameters including the membrane composition, pH, and possible interfering anions were investigated on the response properties of the electrode. The developed sensor exhibited Nernstian responses toward iodide over a wide concentration range of 1×10?7 to 0.1 M with slopes of 57.6±0.8 mV per decade of iodide concentration and detection limit of 8×10?8 M, over a wide pH ranges of 2.0–11.5. The sensors have response time of 0.5 s and can be used for at least 2 months without any considerable divergence in their potential response. The proposed electrode show good ability to discriminate iodide over several inorganic and organic anions.

The electrode was successfully applied to direct determination of iodide in synthetic mixture, waste water and drinking water, and pharmaceutical samples in addition to applying as indicator electrode in precipitation titration.  相似文献   

15.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

16.
A novel fluorescent chemosensor HACBA with carbazole-hemicyanine fluorophore as signal reporter and N,N,N'-tri(2-pyridylmethyl)ethylenediamine (TPEA) as binding sites was designed and synthesized. Its assemblies with anionic surfactant sodium dodecyl sulfate (SDS) show improved fluorescence emission stability and enhanced fluorescence intensity. HACBA/SDS system can selectively recognize Cu2+, which led to a dramatic fluorescence quenching. The in situ resultant HACBA-Cu(II)/SDS ensemble functioned as a highly selective and sensitive sensor for H2S with a turn-on fluorescent response. Our results show that the “on-off-on” molecular switch occured through the reversible formation-dissociation reaction between HACBA-Cu(II) complex and HACBA/CuS in the SDS micellar solution, and at least 3 cycles of on-off-on switches were observed.  相似文献   

17.
A turn-on fluorescent sensor for NO (g) in solution was synthesized using a bipyridyl-substituted poly(p-phenylene vinylene) derivative (CP1) as the sensory scaffold. The action of NO (g) upon the CP1-Cu(II) complex reduces it to the CP1-Cu(I) complex with a concomitant 2.8-fold increase in emission intensity. The reagent is selective for NO (g) versus other biological reactive nitrogen species, except for nitroxyl, and has a detection sensitivity limit of 6.3 nM. [structure: see text]  相似文献   

18.
[structure: see text] The selectivity and sensitivity of a benzothiazolium hemicyanine dye toward mercury(II) in aqueous solutions are described. Mercury ions coordinate to the dye forming a 1:1 complex. This interaction induces a color change in the dye at micromolar concentrations of mercury. Furthermore, the color change and quenching of the dye emission are selective for mercury when compared with other ions such as lead(II), cadmium(II), zinc(II), or iron(II).  相似文献   

19.
Novel 2,3-bis(1H-pyrrol-2-yl)quinoxaline-functionalized Schiff bases were prepared and characterized as new fluorescent sensors for mercury(II) ion. The X-ray crystal structures of compounds 4, 5, 4a and 5a were determined. The binding properties of 4 and 5 for cations were examined by UV-vis and fluorescence spectroscopy. The UV-vis and fluorescence data indicate that a 1 : 1 stoichiometric complex is formed between compound 4 (or 5) and mercury(II) ion, and the association constant is (3.81 +/- 0.7) x 10(5) M(-1) for 4 and (3.43 +/- 0.53) x 10(5) M(-1) for 5. The recognition mechanism between compound 4 (or 5) and metal ion was discussed based on their chemical construction and the fluorescence quenching effect when they interact with each other. Competition experiments revealed that compound 4 (or 5) has a highly selective response to mercury(II) ion in aqueous solution.  相似文献   

20.
Dopamine being a neurotransmitter and chemical messenger plays a vivacious role in a number of significant medical conditions like Parkinson’s disease, Attention Deficit Hyperactivity Disorder, Schizophrenia, and drug addiction. As turn-on sensors have a superior level of selectivity than fluorescence quenching based sensors, we developed a fluorescence retrieval strategy for dopamine sensing. Here, highly fluorescent amino phenyl boronic acid (APBA)?conjugated gold nanocluster (Au?BSA?APBA probe) has been synthesised from bovine serum albumin?protected gold nanocluster (Au?BSA NCs). Boronic acid forms boronate ester with disaccharides such as lactose due to its affinity to polyols. Hence fluorescence of Au?BSA?APBA probe is quenched when it binds with lactose molecules through boronate ester formation. The fluorescence of Au?BSA?APBA?lactose system can be retrieved (turn-on) with dopamine by the competitive displacement of lactose from the probe surface which suggests the higher affinity of boronic acid to the catechol group of dopamine. Furthermore, real samples spiked with dopamine including human serum and urine were analysed using this turn-on sensor and showed excellent recovery percentage. The developed fluorescent sensor offered high selectivity for dopamine over other catecholamines and aminoacids with detection limit as low as 0.7 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号