首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are numerous technologies currently being tested by EPA, universities throughout the world, and private research organizations. A few of the more promising innovative technologies as well as fully tested and proven remedies for treating contaminated groundwater are presented in this article. Although several of those technologies have been in existence for only four to five years, the results of full-scale testing are being produced. The method for each of these promising technologies is described, results from recent field-scale studies are summarized, and a discussion of cost is presented.  相似文献   

2.
Decisions that determine the proper risk-based remediation approach are based on technical, regulatory, cost, legal, and political factors. A wide variety of options such as the ASTM RBCA tiered approach, the API Decision Support Software, and a host of agency-specific methods and commercial risk assessment software are all available. The optimization of a remediation project requires the right remediation technology coupled with the appropriate analytical framework. For groundwater remediation, the application of various “risk reduction” technologies can be classified as aggressive (pump and treat), moderate intensity (air sparging), low intensity (oxygen release compound-ORC®), and intrinsic (monitor only). The time frame of risk analysis will establish the proper risk reduction strategy. The selection process is inherently iterative, and the approach by which an optimal solution can be derived forms the basis of this article. A case study of a Texas site put these issues into context.  相似文献   

3.
The need for remediation of poly‐ and perfluoroalkyl substances (PFASs) is growing as a result of more regulatory attention to this new class of contaminants with diminishing water quality standards being promulgated, commonly in the parts per trillion range. PFASs comprise >3,000 individual compounds, but the focus of analyses and regulations has generally been PFASs termed perfluoroalkyl acids (PFAAs), which are all extremely persistent, can be highly mobile, and are increasingly being reported to bioaccumulate, with understanding of their toxicology evolving. However, there are thousands of polyfluorinated “PFAA precursors”, which can transform in the environment and in higher organisms to create PFAAs as persistent daughter products. Some PFASs can travel miles from their point of release, as they are mobile and persistent, potentially creating large plumes. The use of a conceptual site model (CSM) to define risks posed by specific PFASs to potential receptors is considered essential. Granular activated carbon (GAC) is commonly used as part of interim remedial measures to treat PFASs present in water. Many alternative treatment technologies are being adapted for PFASs or ingenious solutions developed. The diversity of PFASs commonly associated with use of multiple PFASs in commercial products is not commonly assessed. Remedial technologies, which are adsorptive or destructive, are considered for both soils and waters with challenges to their commercial application outlined. Biological approaches to treat PFASs report biotransformation which creates persistent PFAAs, no PFASs can biodegrade. Water treatment technologies applied ex situ could be used in a treatment train approach, for example, to concentrate PFASs and then destroy them on‐site. Dynamic groundwater recirculation can greatly enhance contaminant mass removal via groundwater pumping. This review of technologies for remediation of PFASs describes that:
  • GAC may be effective for removal of long‐chain PFAAs, but does not perform well on short‐chain PFAAs and its use for removal of precursors is reported to be less effective;
  • Anion‐exchange resins can remove a wider array of long‐ and short‐chain PFAAs, but struggle to treat the shortest chain PFAAs and removal of most PFAA precursors has not been evaluated;
  • Ozofractionation has been applied for PFASs at full scale and shown to be effective for removal of total PFASs;
  • Chemical oxidation has been demonstrated to be potentially applicable for some PFAAs, but when applied in situ there is concern over the formation of shorter chain PFAAs and ongoing rebound from sorbed precursors;
  • Electrochemical oxidation is evolving as a destructive technology for many PFASs, but can create undesirable by‐products such as perchlorate and bromate;
  • Sonolysis has been demonstrated as a potential destructive technology in the laboratory but there are significant challenges when considering scale up;
  • Soils stabilization approaches are evolving and have been used at full scale but performance need to be assessed using appropriate testing regimes;
  • Thermal technologies to treat PFAS‐impacted soils show promise but elevated temperatures (potentially >500 °C) may be required for treatment.
There are a plethora of technologies evolving to manage PFASs but development is in its early stage, so there are opportunities for much ingenuity.  相似文献   

4.
5.
6.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. Combustion technologies have been the principal technology used to destroy POPs. However, combustion technologies can create polychlorinated dibenzo‐p‐dioxins and polychlorinated dibenzo‐p‐furans, which are human carcinogens. Two organizations, the United Nations Environment Programme (UNEP) and the International HCH and Pesticides Association (IHPA) have developed detailed reports and fact sheets about noncombustion technologies for POP treatment. This article is intended to update and summarize these reports in a concise reader's guide, with links to sources of further information. The updated information was obtained by reviewing various Web sites and documents, and by contacting technology vendors and experts in the field. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
This article quantifies the nature, frequency, and cost of environmental remediation activities for onshore oil and gas operations, as determined from over 4,100 environmental remediation cases in Texas, Kansas, New Mexico, and Colorado. For the purpose of this article, “remediation'' refers to cleanup efforts that entail longer‐term site characterization, monitoring, and remedial action beyond the initial spill cleanup or emergency response stage. In addition, data are also presented regarding short‐term spill cleanup activities in two of the four states. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Wood preserving facilities have used a variety of compounds, including pentachlorophenol (PCP), creosote, and certain metals, to extend the useful life of wood products. Past operations and waste management practices resulted in soil and water contamination at a portion of the more than 700 wood preserving sites in the United States (EPA, 1997). Many of these sites are currently being addressed under federal, state, or voluntary cleanup programs. The U.S. Environmental Protection Agency (EPA) National Risk Management Research Laboratory (NRMRL) has responded to the need for information aimed at facilitating remediation of wood preserving sites by conducting treatability studies, issuing guidance, and preparing reports. This article presents a practical methodology and computer model for screening the performances and comparing the costs of seven innovative technologies that could be used for the treatment of contaminated soils at user‐specified wood preserving sites. The model incorporates a technology screening function and a cost‐estimating function developed from literature searches and vendor information solicited for this study. This article also provides background information on the derivation of various assumptions and default values used in the model, common contaminants at wood preserving sites, and recent trends in the cleanup of such sites. © 2001 John Wiley & Sons, Inc.  相似文献   

9.
This is the first in a series of five articles describing the applicability, performance, and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site‐specific treatability studies conducted under the supervision of the United States Environmental Protection Agency (US EPA), National Risk Management Research Laboratory (NRMRL), from 1995 through 1997 constitute much of the basis for the evaluations presented, although data from other treatability studies, literature sources, and actual site remediations have also been included to provide a more comprehensive evaluation of remediation technologies. This article provides an overview of the wood preserving sites studied, including contaminant levels, and a summary of the performance of the technologies evaluated. The subsequent articles discuss the performance of each technology in more detail. Three articles discuss technologies for the treatment of soils, including solidification/stabilization, biological treatment, solvent extraction and soil washing. One article discusses technologies for the treatment of liquids, water and nonaqueous phase liquids (NAPLS), including biological treatment, carbon adsorption, photolytic oxidation, and hydraulic containment. The reader should be aware that other technologies including, but not limited to, incineration, thermal desorption, and base catalyzed dehalogenation, also have application for treating contaminants on wood preserving sites. They are not discussed in these five articles since the focus was to evaluate lesser known and hopefully lower cost approaches. However, the reader should include consideration of these other technologies as part of any evaluation or screening of technologies applicable to remediation of wood preserving sites.  相似文献   

10.
11.
This article presents a review of in situ technologies for the remediation of soils contaminated with lead, zinc, and/or cadmium. The objective of this review is to assess the developmental status of the available in situ technologies and provide a general summary of typical applications and limitations of these technologies. The literature review identified seven in situ remediation technologies—solidification/stabilization, vitrification, electrokinetic remediation, soil flushing, phytoextraction, phytostabilization, and chemical stabilization. These technologies were considered for their ability to meet a specific set of remediation objectives under a range of conditions. Each of these technologies has both strengths and weaknesses for addressing particular remedial situations discussed in the article for each of the technologies. A general summary of which technologies are most applicable to common remedial scenarios is also provided. © 2004 Wiley Periodicals, Inc.  相似文献   

12.
13.
In situ solidification (ISS) is a reliable, EPA‐recognized technology for the treatment of industrial and waste sites. ISS was employed at a former manufactured gas plant (MGP) site in Macon, Georgia, for the treatment of approximately 33,000 cubic yards of coal tar residues in the saturated zone soil. The site is regulated by the Georgia Environmental Protection Division (EPD) under the Hazardous Site Rehabilitation Act (HSRA) and is located approximately four blocks from downtown Macon. This article will review the technical and regulatory basis for the successful use of this technology, provide an overview of the treatability and pilot testing used to develop the design and implementation of the treatment process, and present the results of the application of ISS to an MGP site. The results of groundwater monitoring, pre and postremediation, will also be discussed. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
An improved rescue number, RNSOIL, which is an indicator for evaluating remediation technologies for contaminated ground that is based on both the risk and the remediation cost, is proposed as a tool of risk communication. The risk posed by contaminated ground is indicated by the figure of treatment priority at time t, FTP(t), which represents the human health risk as the number of people affected by the contaminated ground at time t during the remediation process. The calculation of the value of FTP(t) is based on exposure to contaminants that have migrated through environmental media from the contaminated ground, and is estimated by using a CalTOX model and the Monte Carlo method. The integration of FTP(t) with time, which represents the cumulative number of people affected by the contaminated ground, is used to estimate the performance of individual remediation technologies in risk reduction. The figure of unprocessibility for waste (FUW), which represents difficulties in remediation, is expressed as the remediation cost. FUW is estimated by using actual costs per unit volume of remediated soil. As an overall performance value, the rescue number for each remediation technology for contaminated ground (RNSOIL) is calculated by multiplication of the integral FTP(t) by FUW. Smaller values of RNSOIL are judged to indicate a better technology. The rescue index (RI), calculated as the ratio of the reduction of the integral FTP(t) to FUW, indicates the cost-effectiveness of the remediation technologies. Successful estimation of the indices (FTP(t), integral FTP(t), FUW, RNSOIL and RI) demonstrate the usefulness of these indices in risk communication.Part of this paper was presented at 13th meeting of Japan Society of Waste Management Experts (2002)  相似文献   

15.
In December 2008, George W. Bush established the World War II Valor in the Pacific National Monument, including eight locations connected with World War II fighting. The executive proclamation designating the monument briefly described the individual sites, mentioning remaining battlefield debris. World War II battle locations in Hawaii and Alaska are currently designated for remediation under different programs of the U.S. Environmental Protection Agency or Department of Defense (DOD). The Pearl Harbor Naval Complex is a “Superfund” National Priority List site. Former military locations in the Aleutian Islands, involved in Japanese occupation and the U.S. offensive to regain control, are included in DOD's Formerly Used Defense Sites (FUDS) remediation program. These monument sites, the regulatory frameworks of the applicable programs, and the current cleanup status are described. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
The enactment of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) created a complex liability scheme for owners, operators and prospective purchasers of contaminated properties, particularly brownfields. As the program developed, liability issues related to contiguous property, prospective purchasers, and no further action determinations became barriers to brownfield property redevelopment. The national effort on the cleanup and redevelopment of brownfield sites took on new emphasis with the passing of the federal “Small Business Liability Protection and Brownfields Revitalization Act” in January 2002. This new law provides liability clarifications as well as funding to facilitate the cleanup of brownfield sites. President Bush stated in his 2003 State of the Union address, “In this century, the greatest environmental progress will come about not through endless lawsuits or command‐and‐control regulations, but through technology and innovation.” The subject of this article is the Interstate Technology Regulatory Commission's Brownfield team, its current initiative, goals, and areas of special focus. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
This article presents a database developed to determine the potential reuse of contaminated sites for primarily ecologically and culturally based activities. The database consists of 172 quantitative and qualitative measures of on‐site land suitability, ecological, cultural, and recreational value, and off‐site suitability, economic, and demographic information. Using sites owned by the U.S. Department of Energy (DOE) as a case study, the article evaluates the quality of available data and suggests ways of using it for planning ecologically sensitive remediation activities and future land use. This type of database can be developed and used by anyone who needs to select, review, or evaluate site remediation and future land use options. Also discussed are the challenges associated with compiling and using data that has been generated by many sources over several years. © 2003 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号