首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stüven R  Bock E 《Water research》2001,35(8):1905-1914
Laboratory and half-technical scale experiments were performed to evaluate nitric oxide (NO) and nitrogen dioxide (NO2) production during biological N-elimination from wastewater with high ammonium concentration (about 700 mg N L-1). In a laboratory scale bioreactor with biomass retention, the ammonia oxidizer Nitrosomonas europaea and the denitrifier Paracoccus denitrificans were grown as reference organisms in co-culture in order to simulate the nitrifying and denitrifying community of wastewater treatment plants. Synthetic wastewater and sludge liquor from the municipal wastewater treatment plant in Lueneburg (Germany) were used. In the laboratory scale reactor, during the treatment of synthetic wastewater, 0.28% of the oxidized ammonium-N was released as NO-N by a pure culture of Nitrosomonas. A simultaneously nitrifying and denitrifying co-culture only released 0.04 to 0.2%. NO2 formation was not observed. NO production was much higher in sludge liquor. A pure culture of Nitrosomonas produced 0.52% NO + NO2-N (= NOx-N), a co-culture of Nitrosomonas and Paracoccus even 1.64% NOx-N. The production rate strongly depended on the media and the organisms used. In a co-culture of N. europaea and P denitrificans, Nitrosomonas was shown to be the most efficient NO producer. NO production increased with ammonium oxidation rate and with nitrite concentration of the medium. In synthetic wastewater, NO production was not influenced by reduced oxygen content. However, in sludge liquor NO production rate increased with decreasing O2 concentration. Here, for the first time, the formation of significant amounts of NO2 during simultaneous nitrification/denitrification could be demonstrated. In half-technical scale experiments, only 0.07% of the oxidized ammonium-N was released as NO-N from the nitrification stage. NO2 was not detectable. Release of nitric oxide from the denitrification stage was mainly diffusion limited and the amount produced did not exceed 0.0001%. A calculation on the basis of the results presented, revealed that biological treatment of nitrogen-rich wastewater is not a significant source for pollution of the atmosphere with NOx in industrial areas.  相似文献   

2.
An overview of nitrification and denitrification in the natural environment is presented and the basic mechanisms of nitrification and denitrification in water/soil environments are described in this paper. Nitrification/denitrification is one of the most important techniques for removing inorganic nitrogenous compounds in water and soil environments. Nitrification and denitrification in aquatic and soil environments can be described by using First‐order kinetic and the methods for parameter estimation are discussed. The study indicated that nitrification and denitrification could take place simultaneously in aerobic and anaerobic zones in soil and water environment. The factors effecting nitrification and denitrification are discussed in this study. External carbon sources are the most important factors for completing denitrification and dissolved oxygen (DO) is very significant for nitrification.  相似文献   

3.
Nitrification and nitrogen removal   总被引:5,自引:0,他引:5  
  相似文献   

4.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

5.
《Water research》1999,33(7):1593-1602
Since 1990 the Agricultural University of Norway and Alfa Laval Agri Ltd have developed a small scale thermophilic aerobic reactor for processing liquid organic wastes and turning them into a stable and hygienic product. The reactor has proven to be a multipurpose reactor, that can process a wide range of organic substrates with VS-contents from about 1.5–9%. It is a prefabricated, compact and self contained unit with all parts mutually adapted to each other, and suitable for local operation. A control system runs the process based on given set values to predict the product quality. The most unique results obtained are high oxygen utilisation, low air flow, no ammonia loss and very low odour release. The reactor causes no atmospheric pollution. The degradation of organic matter is moderate, and the processed substrate has the highest possible agronomic value. The hygienic quality of the product satisfies the criteria set by the Norwegian authorities. The stability of the product proved to be sufficient for a storage period of 10 months. By controlling the process carefully, same results are obtained in this one-stage reactor as in two-stage reactors. Use of one-stage instead of two-stage reactor means reduced investments and simplified operation.  相似文献   

6.
The biological nitrogen removal (BNR) process is the most common method for removing low quantities of ammonium from wastewater, but this is not the usual treatment for high-strength ammonium wastewater. The capacity to biologically remove the nitrogen content of a real industrial wastewater with a concentration of 5000 g N-NH(4)(+) L(-1) is demonstrated in this work. The experimental system used is based on a two-sludge system, with a nitrifying activated sludge and a denitrifying activated sludge. This system treated real industrial wastewater for 450 days, and during this period, it showed the capacity for oxidizing all the ammonium at average nitrification rates between 0.11 and 0.18 g N-NH(4)(+)g VSS(-1)d(-1). Two key process parameters were evaluated: the maximum nitrification rate (MNR) and the maximum denitrification rate (MDR). MNR was determined in continuous operation at three different temperatures: 15 degrees C, 20 degrees C and 25 degrees C, obtaining values of 0.10, 0.21 and 0.37 g N-NH(4)(+) g VSS(-1)d(-1), respectively. Complete denitrification was achieved using two different industrial carbon sources, one containing mainly ethanol and the other one methanol. The MDR reached with ethanol (0.64 g N-NO(x)(-) g VSS(-1)d(-1)) was about 6 times higher than the MDR reached with methanol (0.11g N-NO(x)(-)g VSS(-1)d(-1)).  相似文献   

7.
Refinery wastewaters may contain aromatic compounds and high concentrations of sulfide and ammonium which must be removed before discharging into water bodies. In this work, biological denitrification was used to eliminate carbon, nitrogen and sulfur in an anaerobic continuous stirred tank reactor of 1.3 L and a hydraulic retention time of 2 d. Acetate and nitrate at a C/N ratio of 1.45 were fed at loading rates of 0.29 kg C/m3 d and 0.2 kg N/m3 d, respectively. Under steady-state denitrifying conditions, the carbon and nitrogen removal efficiencies were higher than 90%. Also, under these conditions, sulfide (S(2-)) was fed to the reactor at several sulfide loading rates (0.042-0.294 kg S(2-)/m3 d). The high nitrate removal efficiency of the denitrification process was maintained along the whole process, whereas the carbon removal was 65% even at sulfide loading rates of 0.294 kg S(2-)/m3 d. The sulfide removal increased up to approximately 99% via partial oxidation to insoluble elemental sulfur (S0) that accumulated inside the reactor. These results indicated that denitrification is a feasible process for the simultaneous removal of nitrogen, carbon and sulfur from effluents of the petroleum industry.  相似文献   

8.
Combined nitrification/denitrification in a membrane reactor   总被引:4,自引:0,他引:4  
Walter B  Haase C  Räbiger N 《Water research》2005,39(13):2781-2788
An ever stricter legislation regulating wastewater leads to an increasing demand for biological treatment plants which are able to selectively eliminate nitrogen from wastewaters with a high influent concentration, even when operating in partial influent mode. A membrane-tube-module (MSM) reactor (Membran-Schlauch-Modul-Reaktor) was constructed and realized in the IUV at the University of Bremen. The present approach makes use of all the various layers of the whole biofilm, enabling nitrification and denitrification processes to run simultaneously in one and the same biofilm under optimized conditions. The biological degradation capacity of the system was first successfully tested with synthetic wastewater, and subsequently in a real application with effluents from a recycling of animal carcasses plant and from a coke-oven plant. A mathematical model was devised which describes this biofilm system. The resulting equations were solved by means of the simulation software AQUASIM.  相似文献   

9.
为了研究过度厌氧对短程硝化的影响,采用SBR反应器,在pH值为7.2~8.0、温度为(23±0.5)℃的条件下,通过控制不同的厌氧段时间考察了厌氧/好氧交替方式下短程硝化的特点,分析了过度厌氧对亚硝酸盐积累率、亚硝化菌和硝化菌的比耗氧速率、脱氮除磷特性、同步硝化反硝化(SND)率及污泥沉降性的影响。结果显示,两个系统对氨氮的去除率都达到了96%,亚硝酸盐积累率稳定在70%左右,即过度厌氧对短程硝化无明显影响;硝化过程中发生了明显的同步脱氮现象,而且在小于0.4 mg/L的范围内,平均溶解氧浓度越高则SND率越高;除磷率都达到了95%,过度厌氧不会增加厌氧阶段的释磷量,吸磷主要发生在好氧前0.5 h,DO浓度越高则吸磷速率越快;两个系统的污泥沉降性都得到了改善,过度厌氧对抑制丝状菌膨胀的强化作用不大。  相似文献   

10.
A wide range of geotechnical tests has been carried out to characterise an extensive alluvial deposit that is used as containment for a landfill in which liquid wastes are disposed. The landfill covers an area of 357 ha. Data obtained from the current and previous studies have been used to explore the variability of the properties of two alluvial layers. The upper layer is predominantly silty clay, while the lower layer contains a much wider range of particle sizes. Variations in hydraulic conductivity covering seven orders of magnitude have been measured in both layers. The selection of appropriate parameters for contamination migration studies is discussed.   相似文献   

11.
低DO下的短程硝化及同步硝化反硝化   总被引:30,自引:1,他引:30  
研究了低溶解氧下序批式反应器(SBR)的短程硝化特征和控制条件以及碳源浓度、投加方式对同步脱氮效率的影响。试验结果表明,保持高、低溶解氧交替的环境是实现短程硝化的关键;当进水NH4^ -N为300mg/L、COD为400~600mg/L时,采用半连续碳源投加方式可保证总同步脱氮效率达到80%。  相似文献   

12.
Constructed wetlands (CWs) in the agricultural landscape reduce non-point source pollution through removal of nutrients and particles. The objective of this study was to evaluate if measurements of natural abundance of (15)NO(3)(-) can be used to determine the fate of NO(3)(-) in different types of small CWs treating agricultural runoff. Nitrogen removal was studied in wetland trenches filled with different filter materials (T1--sand and gravel; T3--mixture of peat, shell sand and light-weight aggregates; T8--barley straw) and a trench formed as a shallow pond (T4). The removal was highest during summer and lowest during autumn and winter. Trench T8 had the highest N removal during summer. Measurements of the natural abundance of (15)N in NO(3)(-) showed that denitrification was not significant during autumn/winter, while it was present in all trenches during summer, but only important for nitrogen removal in trench T8. The (15)N enrichment factors of NO(3)(-) in this study ranged from -2.5 to -5.9 per thousand (T3 and T8, summer), thus smaller than enrichment factors found in laboratory tests of isotope discrimination in denitrification, but similar to factors found for denitrification in groundwater and a large CW. The low enrichment factors compared to laboratory studies was attributed to assimilation in plants/microbes as well as diffusion effect. Based on a modified version of the method presented by Lund et al. [Lund LJ, Horne AJ, Williams AE, Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecol Engineer 2000; 14: 67-76], denitrification and assimilation were estimated to account for 53 to 99 and 1 to 47%, respectively, of the total N removal during summer. This method is, however, based on a number of assumptions, and there is thus a need for a better knowledge of the effect of plant uptake, microbial assimilation as well as nitrification on N isotopic fractionation before this method can be used to evaluate the contribution of dinitrification in CWs.  相似文献   

13.
Sodium has unusual fire hazards, including autoignition when heated in air or exposed to liquid water. Owing to limitations of existing suppression agents for sodium pool fires, suppression using liquid nitrogen (LN2) is examined here. Sodium pools of 5–80 g were heated in stainless steel beakers. At about 290 °C, pool surface autoignition occurred and caused a rapid pool temperature increase. Vapor phase combustion occurred when the pools reached 320–450 °C, ultimately leading to pool temperatures up to 700 °C. For suppression tests, LN2 delivery (at 2.7 g/s) began when the fires became fully-developed, near a pool temperature of 600 °C. Liquid nitrogen was found to be an effective suppression agent. The minimum amount of LN2 required to suppress a fully-developed sodium pool fire was found to be about three times the initial sodium pool mass.  相似文献   

14.
对高浓度氨氮的去除一直是垃圾渗滤液处理中的难点之一,为此利用膜生物反应器(MBR)对渗滤液进行了亚硝酸型硝化反硝化的中试研究。结果表明,当进水氨氮浓度〈1000mg/L、氨氮负荷为0.4kgNH4^+-N/(m^3·d)时,对氨氮的去除率可达80%~90%。当反应器中的游离氨浓度〉5mg/L时,NO2^- —N的积累率可达80%以上,表明游离氨抑制是实现亚硝酸型硝化反硝化的主要原因。当进水碳氮比〉(2:1)时,对总氮的去除率可达70%左右,对碳源的需求量明显低于传统的硝化反硝化工艺;当进水的碳氮比降至1:1时,对总氮的去除率仅为30%左右。  相似文献   

15.
两段SBR双污泥系统的短程硝化/反硝化除磷研究   总被引:3,自引:1,他引:2  
针对传统脱氮除磷工艺存在的占地面积大、运行成本高等问题,将短程硝化与反硝化除磷工艺相结合而构建了两段SBR双污泥短程硝化反硝化除磷工艺.在成功启动短程硝化反应器后,亚硝酸盐氮的积累率达到94.23%,系统对氨氮的平均去除率>95%;在以亚硝酸盐氮为电子受体的反硝化除磷菌培养驯化阶段,吸磷率达到了64.44%,同时NO2--N由17.79 mg/L降低为0.05 ms/L,电子受体被完全消耗,基本达到了以NO2--N为电子受体进行反硝化聚磷菌富集的目的.在此基础上,考察了N/P值对系统脱氮除磷效果的影响.结果表明,当N/P为3.0、2.2、1.7时对COD和氨氮的去除效果均较好,对COD的去除率分别为90%、89%、90%,对氨氮的去除率分别为96%、95%和96.7%;当N/P为3.0和2.2时除磷效果良好,平均去除率分别达到了88.5%和91%;而当N/P为1.7时除磷效果明显下降,仅为75.6%.  相似文献   

16.
考察了A/O工艺的水力停留时间、溶解氧、硝化液回流量、污泥回流量和外加碳源等因素对生活污水脱氮效果的影响,得到较为合理的运行参数,并对COD、氨氮、硝氮、总氮、pH值和总碱度在反应器内的沿程变化进行分析。  相似文献   

17.
液氮冻结法在竖井施工方面的应用   总被引:1,自引:1,他引:0  
论述了利用液氮法进行冻结的实例,解决了竖井漏水产生的动水难以封堵的问题,同时满足了工期要求紧,四周环境对冻胀融沉要求高的要求,指出液氮冻结法具有冻结速度快、施工简便、周期短、对周围环境影响小的特点。  相似文献   

18.
针对液氮喷淋在数据中心防灭火方面研究较少的现状,通过 FDS 对某数据中心进行火灾数值模拟,对比有无液氮灭火系统两种情况,机房内烟气蔓延、火焰控制、温度分布以及能见度等参数的变化规律。结果表明,液氮喷淋系统在控制火灾烟气蔓延方面有分散作用,可提高走道处的能见度;液氮汽化并快速分布到整个空间中,可在 500 s 内将着火点周围的温度降低到 50 ℃以下,对其他设备起到保护作用;与传统 CO 2 灭火相比,液氮灭火具有一定的优越性。  相似文献   

19.
The slow leaching of nitrogen from solid waste in landfills, resulting in high concentrations of ammonia in the landfill leachate, may last for several decades. The removal of nitrogen from leachate is desirable as nitrogen can trigger eutrophication in lakes and rivers. In the present study, a low-cost nitrification-denitrification process was developed to reduce nitrogen load especially in leachates from small landfills. Nitrification was studied in laboratory and on-site pilot aerobic biofilters with waste materials as filter media (crushed brick in upflow filters and bulking agent of compost in a downflow filter) while denitrification was studied in a laboratory anoxic/anaerobic column filled with landfill waste. In the laboratory nitrification filters, start-up of nitrification took less than 3 weeks and over 90% nitrification of leachate (NH4-N between 60 and 170mg N l(-1), COD between 230 and 1,300 mg l(-1)) was obtained with loading rates between 100 and 130 mgNH4-N l(-1) d at 25 degrees C. In an on-site pilot study a level of nitrification of leachate (NH4-N between 160 and 270 mg N l(-1), COD between 1,300 and 1,600 mg l(-1)) above 90% was achieved in a crushed brick biofilter with a loading rate of 50mg NH4-N l(-1) d even at temperatures as low as 5-10 degrees C. Ammonium concentrations in all biofilter effluents were usually below the detection limit. In the denitrification column. denitrification started within 2 weeks and total oxidised nitrogen in nitrified leachate (TON between 50 and 150mg N l(-1)) usually declined below the detection limit at 25 degrees C, whereas some ammonium, probably originating from the landfill waste used in the column, was detected in the effluent. No adverse effect was observed on the methanation of waste in the denitrification column with a loading rate of 3.8 g TON-N/t-TS(waste) d. In conclusion, nitrification in a low-cost biofilter followed by denitrification in a landfill body appears applicable for the removal of nitrogen in landfill leachate in colder climates.  相似文献   

20.
同时硝化/反硝化除磷过程的控制策略研究   总被引:2,自引:1,他引:1  
为实现同时硝化/反硝化除磷(SNDPR)过程,在SBR反应器内,采用模拟低碳源污水和厌氧-交替好氧/缺氧的运行方式对污泥进行培养驯化,成功实现了反硝化聚磷茵和硝化茵的良好共存.在此基础上,考察了厌氧/间歇曝气和厌氧/连续曝气两种模式下SNDPR工艺对污水的处理效果.结果表明,在上述两种模式下,系统对TP的去除率分别为92%和90%,对TN的去除率分别为83%和72%;厌氧/间歇曝气模式更有利于SNDPR工艺对低碳源污水的处理.另外,对电化学参数的研究表明,pH曲线上的"膝点"可近似预示SNDPR过程的结束,而ORP的变化范围及稳定性可预示SNDPR过程中硝化和反硝化除磷同时发生的平衡程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号