首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors.  相似文献   

2.
It is generally accepted and well described that the mechanism by which extreme-pressure (EP) and antiwear (AW) additives reduce the friction and wear of metallic surfaces under boundary lubrication is the formation of tribochemical films. Although investigations of diamond-like carbon (DLC)-coated surfaces showed improved tribological properties when lubricated by additivated oil, the mechanism responsible is not fully understood. Therefore, the aim of the investigation was to determine the mechanism responsible for the low-friction behaviour of W-containing DLC coatings when lubricated with polyalphaolefin (PAO) oil containing EP or AW additives and to obtain some further understanding to this important area.The results of the present investigation clearly show that low-friction behaviour of boundary-lubricated W-DLC coatings is governed by formation of WS2-containing tribofilms on the steel countersurface or exposed steel substrate, which reduce friction by up to 50%.  相似文献   

3.
The main aim of this work is the comparison among different methods for metal incorporation in Diamond-Like Carbon (DLC, fullerene-like) Carbon for improving the tribological properties. The films have been grown by Electron Cyclotron Resonance Chemical Vapour Deposition (ECR-CVD) applying a negative bias voltage to the substrate. Structural characterization of the samples was performed by Raman spectroscopy and SEM microscopy. The tribological behaviour (friction coefficient and wear) was evaluated by pin-on-disc tests. We have dealt with several approaching methods for the introduction of metal (Cr, Mo) during the growth of carbon coatings. Metallic atoms supply has been provided in two approaches: a) by placing a target (bulk or biased-mesh) inside the deposition system (in-situ methods), or b) from nanoparticles dispersions (ex-situ). The metal-containing films present a low friction coefficient roughly similar to the reference DLC film. When in-situ methods are applied lower wear strength has been detected. Otherwise, we have seen that the incorporation of Cr nanoparticles, coming from 300 ppm ethanol dispersion, produces a significant improvement in the tribological behaviour of the sample, as shown by the severe increase in the sliding distance until coating rupture. Therefore, from the comparison among the three different methods we can infer the clear key role played by the incorporated metal nanoparticles into fullerene-like carbon films for the improvement in the tribological properties of the nanocomposites.  相似文献   

4.
Cr-containing diamond-like carbon (Cr-DLC) films was deposited on silicon wafers by a hybrid beams system, which consists of a DC magnetron sputtering and a linear ion source. The chromium content in the films was adjusted by varying the fraction of Ar in the Ar and CH4 gas mixture. The composition, microstructure, surface morphology, mechanical properties and tribological behavior of the films were investigated by XPS, TEM, AFM, SEM, nano-indentation and tribological tester as a function of Cr content. It is shown that, as the Cr content increased from 1.49 to 40.11 at.%, the Cr-DLC films transfer from amorphous DLC with dispersed metallic-like Cr to composite DLC with carbide phases embedding in the DLC matrix, and the film surface morphology also evolve from flat surface into rough surface with larger hillocks. The amorphous Cr-DLC films exhibit a low friction coefficient and wear rate as pure DLC, while the composite Cr-DLC films show a higher friction coefficient and wear rate, although they possess a relatively high hardness.  相似文献   

5.
脉冲真空电弧离子镀在不锈钢上沉积类金刚石薄膜的研究   总被引:2,自引:1,他引:2  
周顺  严一心 《真空》2005,42(4):15-18
利用脉冲真空电弧离子镀技术在3Cr13不锈钢上制备了类金刚石(DLC)薄膜,通过Raman光谱分析了膜的结构特征,采用摩擦磨损试验机测试了薄膜在不同载荷下的摩擦系数,运用划痕仪研究了膜基的结合强度.结果表明:所镀制的薄膜具有典型类金刚石结构特征,膜中ID/IG为1.33;摩擦系数随着载荷的增大而减小,载荷为5 N,转速120 r/min时的摩擦系数为0.12;Ti过渡层的引入显著地提高了膜基结合力.  相似文献   

6.
离子束类金刚石膜的摩擦磨损及耐蚀性能   总被引:2,自引:0,他引:2  
研究了沉积类金刚石膜 (DLC)的 4 0Cr钢的摩擦磨损性质 ,定量分析了DLC膜的耐蚀性。研究表明 :DLC膜能显著降低 4 0Cr钢表面摩擦系数和表面粗糙度 ,在相同载荷条件下DLC膜的磨损速率比 4 0Cr钢低 2个数量级 ;在各种腐蚀介质中 ,DLC膜的腐蚀速率明显低于 4 0Cr的 ,且其电极电位、自然腐蚀电位和点蚀击穿电位均高于 4 0Cr钢的 ,表明DLC膜可提高 4 0Cr钢的耐蚀性能  相似文献   

7.
Reduction of friction and wear for parts made of aluminium by diamond-like carbon coatings Reduction of friction and wear of machine parts and tools is usually achieved by separating the participating surfaces. This is predominantly done by liquid lubricants. Solid lubricant coatings replace them where hydrodynamic lubrication is not possible or not active. Among the hard and friction reducing layers diamond-like carbon films (DLC) have distinguished themselves as the most interesting representatives. They are deposited on metallic and ceramic parts in a glow discharge of a hydrocarbon gas at temperatures between 150 and 200 °C. Those low deposition temperatures, their very low dry sliding friction coefficient of 0.05 to 0.1, and an elastic recovery of 90 % differentiate them from PVD coatings to a high degree. DLC can also be deposited on light metals with thicknesses of more than 30 μm. For closed films an outstanding protection against corrosion is established. Machining and forming of light metals can be done without cooling lubricants.  相似文献   

8.
The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen, DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work.  相似文献   

9.
Carbon‐based Coatings Coated components are used in many applications in motorcars. The objective of first applications was mainly wear reduction. Currently friction reduction gets more and more in the spotlight. Coatings are systematically developed and implemented as a design element. The selection of a suitable coating or a coating system should be based on an evaluation of the complete tribological system. Friction reduction is usually only possible in the boundary friction and mixed lubrication regime. The roughness of body and counterbody and their running‐in limits the possible effect. The compatibility of lubricants and coatings gets more and more important. As an example an engine oil with MoDTC additive results in increased friction of DLC coated valve‐train components in certain speed ranges. A specially for this application adjusted metal‐containing DLC (CrC/a‐C:H) avoids this effect.  相似文献   

10.
Diamond-like carbon (DLC) films were deposited by a cathodic arc plasma evaporation (CAPD) process, using a mechanical shield filter combined with a magnetic filter with enhanced arc structure at substrate-bias voltage ranging from − 50 to − 300 V. The film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties were investigated by using a nanoindentation tester, scratch test and ball on disc wear test. The Raman spectra of the films showed that the wavenumber ranging from 900 to 1800 cm− 1 could be deconvoluted into 1140 cm− 1, D band and G band. The bias caused a significant effect on the sp3 content which was increased with the decreasing of ID/IG ratio. The XPS spectra data of the films which were etched by H+ plasma indicated the sp3 content are higher than those of the as-deposited DLC films. This implied that there is a sp2-rich layer present on the surface of the as-deposited DLC films. The nanoindentation hardness increased as the maximum load increased. A 380 nm thick and well adhered DLC film was successfully deposited on WC-Co substrate above a Ti interlayer. The adhesion critical load of the DLC films was about 33 N. The results of the wear tests demonstrated that the friction coefficient of the DLC films was between 0.12 and 0.2.  相似文献   

11.
In order to improve the friction and wear behaviours and rolling contact fatigue (RCF) life of bearing steel materials, Ti/TiN/DLC (diamond-like carbon) multilayer hard films were fabricated onto AISI52100 bearing steel surface by plasma immersion ion implantation and deposition (PIIID) technique. The micro-Raman spectroscopy analysis confirms that the surface film layer possess the characteristic of diamond-like carbon, and it is composed of a mixture of amorphous and crystalline phases, with a variable ratio of sp2/sp3 carbon bonds. Atomic force microscope (AFM) reveals that the multilayer films have extremely smooth area, excellent adhesion, high uniformity and efficiency of space filling over large areas. The nanohardness (H) and elastic modulus (E) measurement indicates that the H and E of DLC multilayer films is about 32 GPa and 410 GPa, increases by 190.9% and 86.4%. The friction and wear behaviours and RCF life of DLC multilayer films specimen have also been investigated by ball-on-disc and three-ball-rod fatigue testers. Results show that the friction coefficient against AISI52100 steel ball decreases from 0.92 to 0.25, the longest wear life increases nearly by 22 times. In addition, wear tracks of the PIIID samples as well as wear tracks of the sliding steel ball were analyzed with the help of optical microscopy and scanning electron microscopy (SEM). The L10, L50, La and mean RCF life L of treated bearing samples, in 90% confidence level, increases by 10.1, 4.2, 3.5 and 3.4 times, respectively. Compared with the bearing steel substrate, the RCF life scatter extent of Ti/TiN/DLC multilayer films sample is improved obviously.  相似文献   

12.
Diamond-like carbon (DLC) coatings are nowadays successfully applied on industrial components like pistons, piston rings and bearings in lubricated tribological contacts due to friction and wear reducing effects. In contradiction thereto, todays lubricants and additives are designed for tribological steel/steel contacts, whereby the knowledge on tribochemical layer formation on steel surfaces is comprehensive in contrast to the physical-chemical interactions between diamond-like carbon coatings, lubricants and additives. Therefore the formation mechanisms of zinc, molybdenum, sulfur and phosphorus containing reaction layers on a zirconium modified diamond-like carbon coating a-C : H : Zr (ZrCg) in lubricated tribological contacts were analyzed by means of pin-on-disc (PoD) tribometer by varying the distances from s = 200 m–3,000 m under boundary and mixed friction conditions at T = 90 °C and a contact pressure p = 1,300 MPa regarding the application of diamond-like carbon coatings on gears. The base lubricant poly-alpha-olefin (PAO) was formulated using the anti-wear (AW) and extreme pressure (EP) additive zinc dialkyldithiophosphate (ZnDTP) and the friction modifier (FM) additive molybdenum dialkyldithiophosphate (MoDTP). The chemical composition of the tribochemical reaction layers by means of and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) as well as for the thickness differ significantly by varying the additivation.  相似文献   

13.
DLC films were prepared by plasma-based ion implantation (PBII) using acetylene as carbon source on AISI 321 steel substrate. The effect of implanting voltage on the characteristics of these films was investigated. The structures of the films were analyzed by Raman spectroscopy. The morphologies of the films were observed by atomic force microcopy (AFM), and the hardness of the films was measured with mechanical property microprobe. The results indicated that the characteristics of these films are strongly depended on the implanting voltage. The DLC films with lowest friction coefficient, longest wear life, and lowest surface roughness was achieved around −30 keV, which was thought to be the optimum implanting voltage in this study.  相似文献   

14.
采用线性离子束沉积技术于AZ80镁合金微弧氧化(MAO)陶瓷层表面沉积不同厚度的类金刚石碳(DLC)膜,形成DLC/MAO复合膜层。对比研究4种膜基系统的表面结构特征、力学性能以及摩擦学性能差异。结果表明:随DLC膜厚度增加,复合膜层表面微孔数量减少,孔径减小,但凹凸不平趋势增加,且DLC膜表面颗粒特征更加明显,表现为DLC-80min/MAO/AZ80膜基系统具有最小的表面粗糙度,最大的硬度H、弹性模量E及H/E值;不同厚度DLC/MAO/AZ80膜基系统平均摩擦因数较MAO/AZ80显著降低;DLC膜厚度增加导致3种复合膜基系统的表面微观结构改变,使得摩擦因数与磨痕形貌存在差异;各膜基系统表面磨痕处均形成了Fe的转移层,由于表层DLC膜"裸露"的大量C对磨损界面具有很好的润滑作用,而使得镁合金基体获得有效保护。  相似文献   

15.
Mechanical load can drastically affect the properties of orthopedic implant materials. Damage of these materials usually occurs in contact surfaces, caused by abrasion, adhesion, fretting, delamination, pitting and fatigue depending on friction, lubrication, contact area, surface finish and level of loads (stresses).Carbon-based films are biocompatible with good bearing capacity, wear resistance, corrosion resistance and have a low coefficient of friction. However, great intrinsic stress prevents their wider application, mainly as implant coatings. To reduce this undesirable effect special deposition procedures are under development and/or the films are doped with suitable elements. It must be emphasized that DLC is not a material but a group of materials with a variety of properties. The relationships between the fretting wear behavior and mechanical properties of films based on carbon deposited by DC using the pulsed arc discharge PVD nitrogen doped (a-C) and the filtered pulsed arc discharge deposition system (ta-C) were tested.The composition of carbon films (sp3, sp2) was determined by Raman spectroscopy. Mechanical properties of elastic modulus and hardness were determined by a NanoTest apparatus with diamond Berkovich tip using the Oliver-Pharr procedure and adhesion was measured by nanoscratch tests. Tribological behavior was analyzed by fretting tests with a corundum ball under dry sliding lubricated conditions.The good performance of the hard carbon coatings is often discussed. Results from this study of fretting and the associated lubrication (bovine serum) show that ta-C coatings, despite their high hardness, have very low friction coefficients and low volume losses.  相似文献   

16.
The low hardness and poor tribological performance of aluminum alloys restrict their engineering applications. However, protective hard films deposited on aluminum alloys are believed to be effective for overcoming their poor wear properties. In this paper, diamond-like carbon (DLC) films as hard protective film were deposited on 2024 aluminum alloy by arc ion plating. The dependence of the chemical state and microstructure of the films on substrate bias voltage was analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical and tribological properties of the DLC films deposited on aluminum alloy were investigated by nanoindentation and ball-on-disk tribotester, respectively. The results show that the deposited DLC films were very well-adhered to the aluminum alloy substrate, with no cracks or delamination being observed. A maximum sp3 content of about 37% was obtained at −100 V substrate bias, resulting in a hardness of 30 GPa and elastic modulus of 280 GPa. Thus, the surface hardness and wear resistance of 2024 aluminum alloy can be significantly improved by applying a protective DLC film coating. The DLC-coated aluminum alloy showed a stable and relatively low friction coefficient, as well as narrower and shallower wear tracks in comparison with the uncoated aluminum alloy.  相似文献   

17.
Size effect on friction in scaled down strip drawing   总被引:1,自引:0,他引:1  
Friction conditions have important influence on the metal forming process. This is even more significant in microforming because of size effect. Friction size effect was studied in this paper. The specimen material was copper alloy T2 which was thermally treated at 873 K for 12 h in nitrogen atmosphere. The specimens were manufactured by wire cutting with initial width of 8, 4, 2, and 1 mm, and length of 80 mm. The experiments were carried out at room temperature on a universal testing machine under four kinds of lubrication conditions. The results showed the friction size effect was not found without lubrication. However, the friction size effect took place when lubricated with soybean oil, castor oil, and petroleum jelly. The friction coefficient increased distinctly with the miniaturization of the specimen size. The reason for this phenomenon was also discussed in this paper.  相似文献   

18.
The friction and wear behavior of carbon nanotube reinforced polyamide 6 (PA6/CNT) composites under dry sliding and water lubricated condition was comparatively investigated using a pin-on-disc wear tester at different normal loads. The morphologies of the worn surfaces and counterfaces of the composites were also observed with scanning electron microscopy (SEM). The results showed that CNTs could improve the wear resistance and reduce the friction coefficient of PA6 considerably under both sliding conditions, due to the effective reinforcing and self-lubricating effects of CNTs on the PA6 matrix. The composites exhibited lower friction coefficient and higher wear rate under water lubricated condition than under dry sliding. Although the cooling and boundary lubrication effect of the water contributed to reduce the friction coefficient of the composites, the adsorbed water lowered the strength of the composites and also inhibited the formation of transfer layers on the counterfaces resulting in less wear resistance. With the increasing normal loads, the friction coefficient of the composites increased under the dry sliding and decreased under the water lubricated condition, owing to inconsistent influences of shear strength and real contact areas. The specific wear rate of the composites increased under both sliding conditions.  相似文献   

19.
Abstract

In this work, the thermal stability and the oxidation and tribological behavior of nanoporous a-BC:H films are studied and compared with those in conventional diamond-like carbon (DLC) films. a-BC:H films were deposited by pulsed plasma chemical vapor deposition using B(CH3)3 gas as the boron source. A DLC interlayer was used to prevent the a-BC:H film delamination produced by oxidation. Thermal stability of a-BC:H films, with no delamination signs after annealing at 500 °C for 1 h, is better than that of the DLC films, which completely disappeared under the same conditions. Tribological test results indicate that the a-BC:H films, even with lower nanoindentation hardness than the DLC films, show an excellent boundary oil lubricated behavior, with lower friction coefficient and reduce the wear rate of counter materials than those on the DLC film. The good materials properties such as low modulus of elasticity and the formation of micropores from the original nanopores during boundary regimes explain this better performance. Results show that porous a-BC:H films may be an alternative for segmented DLC films in applications where severe tribological conditions and complex shapes exist, so surface patterning is unfeasible.  相似文献   

20.
Cr-doped diamond-like carbon (DLC) films were synthesized using a cathodic arc evaporation (CAE) process. The thermal oxidation behavior of Cr-doped DLC films was investigated using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The phase identification and microstructural examinations were conducted by X-ray diffraction, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) in order to understand the characteristics of Cr-doped DLC films. The as-deposited Cr-doped DLC film exhibits a lamellar structure observed by TEM. A significant weight loss of film results from the thermal oxidation of carbon occurred at 290 to 342 °C. At the temperature higher than 342 °C, slight weight gain of specimen was observed due to the thermal oxidation of the underlying CrCxNy and CrN interlayer. By heat-treated specimens from 200 to 400 °C, Raman spectra reveal the increase of ID/IG value conforming to the graphitiation process of the Cr-doped DLC films. Finally, surface reactions of the annealed films using XPS analysis were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号