首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhiming Qiu  Suobo Zhang 《Polymer》2005,46(5):1693-1700
A novel method for the preparation of 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride have been investigated. This new dianhydride contains flexible phenoxy side chain and a twist biphenyl moiety and it was synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride and subsequent aromatic nucleophilic substitution with phenoxide. The overall yield was up to 75%. The dianhydride was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The polyimide properties such as inherent viscosity, solubility, UV transparency and thermaloxidative properties were investigated to illustrate the contribution of the introduction of phenoxy group at 2- and 2′-position of BPDA dianhydride. The resulting polyimides possessed excellent solubility in the fact that the polyimide containing rigid diamines such as 1,4-phenylenediamine and 4,4′-oxydianiline were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide and chloroform. The glass-transition temperatures of the polymers were in the range of 255-283 °C. These polymers exhibited good thermal stability with the temperatures at 5% weight loss range from 470 to 528 °C in nitrogen and 451 to 521 °C in air, respectively. The polyimide films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 105-168 MPa, 15-51%, 1.87-2.38 GPa, respectively.  相似文献   

2.
Jingling Yan  Lianxun Gao 《Polymer》2005,46(18):7678-7683
4,4′-Bis(3,4-dicarboxyphenylthio)diphenyl sulfone dianhydride(4,4′-PTPSDA) and 4,4′-bis(2,3-dicarboxyphenylthio)diphenyl sulfone dianhydride(3,3′-PTPSDA) were synthesized from chlorophthalic anhydrides and bis(4-mercaptophenyl)sulfone. Their structures were determined via IR spectra, 1H NMR and elemental analysis. A series of polyimides were prepared from isomeric PTPSDAs and aromatic diamines in 1-methyl-2-pyrrolidinone (NMP) via the conventional two-step method. Polyimides based on 4,4′-PTPSDA and 3,3′-PTPSDA have good solubility in polar aprotic solvents and phenols. The 5% weight-loss temperatures of isomeric polyimides were near 500 °C in N2. DMTA and DSC analyses indicated that the glass-transition temperatures of polyimides from 3,3′-PTPSDA are higher than those of polyimides from 4,4′-PTPSDA. The wide-angle X-ray diffraction showed that all polyimides are amorphous. The polyimides from 3,3′-PTPSDA showed higher permeability but lower permselectivity compared with those from 4,4′-PTPSDA.  相似文献   

3.
A novel diamine monomer, 2,4-diamino-4′-carboxy diphenyl ether had been synthesized. Several polyimides were prepared by reacting this diamine with commercially available dianhydrides, such as benzophenone tetracarboxylic acid dianhydride (BTDA), 4,4′-bis{hexafluoroisopropylidene bis (phthalic anhydride)}(6-FDA), oxydiphthalic anhydride (ODPA) and 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA). Furthermore, copolymers from the resulting diamine and oxydianiline (ODA) with 6 FDA were also synthesized. The inherent viscosities of the polymers were 0.42-0.67 dl g−1. The polymers have good solubility in polar aprotic solvents, high thermal stability up to 410 °C in nitrogen and high glass transition temperatures (Tg) ranging from 260-330 °C. These polymers formed tough flexible films by solution casting.  相似文献   

4.
Novel polyimides containing furan moieties were prepared from the resulting furanic diamine monomers with various aromatic dianhydrides including 1,2,4,5-benzene-tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, and hexafluoroisopropylidene 2,2-bis(phthalic anhydride), via a two-step process. The resulting polyimides were characterized by solubility tests, viscosity measurements, FTIR, 1H NMR spectroscopy, differential scanning calorimetric (DSC), and thermogravimetric analysis (TGA) analysis. The polyimides with inherent viscosities in the range of 0.048–0.095 L/g showed excellent solubility in aprotic amide and organic solvents, such as N,N-dimethylacetamide, N-methyl-2-pyrrolidinone, dimethylformamide and acetone, chloroform, etc. DSC showed glass transition temperatures (T g) in the range of 116–143 °C. These polymers showed excellent thermal stability up to 390 °C.  相似文献   

5.
Two series of poly(ether imide)s (PEIs) containing fluorenyl cardo groups in the main chains were synthesized, which are derived from the polycondensation of 9,9′‐bis(4‐aminophenoxyphenyl)fluorene (BAOFL) or 9,9′‐bis(3‐trifluoromethyl,4‐aminophenoxyphenyl)fluorene (6F‐BAOFL) with four kinds of dianhydrides (3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 4,4′‐oxydiphthalicanhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bisphenol‐A dianhydride), respectively. The PEI films and PEI powder were prepared by thermal and chemical imidization, respectively. The PEIs were characterized by FTIR, 1H‐NMR, differential scanning calorimetry, thermogravimetric analysis, and UV–vis were performed on inherent viscosity, solubility, and tensile tests. The effects of fluorenyl cardo groups and ether linkages on the solubility, tensile properties, thermal stability, and optical properties were investigated in detail. It was found that the PEIs had good solubility in common organic solvents and good optical transparency in visible light region. In addition, the PEI films exhibited excellent tensile and thermal properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Samdae Park  Jin Chul Kim 《Polymer》2011,52(10):2170-240
A series of soluble poly(amic acid) precursors were prepared from a new carbzole-containing monomer, 3,3′-bis[9-carbazole(ethyloxy)biphenyl]-4,4′-diamine (HAB-CBZ) by polycondensation with four different aromatic dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-diphenylethertetracarboxylic dianhydride (ODPA), and 3,3′,4,4′-diphenylsulfonyltetracarboxylic dianhydride (DSDA). From the precursors, nanoscale thin films of polyimides (PIs) were prepared by spin-coating and subsequent thermal imidization. All the PIs exhibited excellent thermal and dimensional stability. In particular, the PIs based on the PMDA and BPDA units revealed excellent chemical resistance to organic solvents, in addition to the high thermal and dimensional stability, which are required for the fabrication of high performance memory devices in three-dimensionally multi-stack structure. Devices fabricated with nanoscale thin PI films exhibited excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 1010. The active PI films were found to operate at 2.2-3.3 V, depending on the chemical structures. This study found that the imide rings as local charge trap sites are necessary to enhance the memory performance in addition to carbazole moiety. All the results collectively indicate that the thermally, dimensionally and chemically stable PIs of this study are a promising material for the mass production at low cost of high performance, programmable nonvolatile WORM memory devices that can be operated with low power consumption in unipolar switching mode.  相似文献   

7.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

8.
A diamine containing a pendant phenoxy group, 1-phenoxy-2,4-diaminobenzene, was synthesized and condensed with different aromatic dianhydrides [4,4′-oxydiphthalic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracorboxylic dianhydride, and pyromellitic dianhydride] by one-step synthesis at a high temperature in m-cresol to obtain polyimides in high yields. Most of the polyimides exhibited good solvent solubility and could be readily dissolved in chloroform, sym-tetrachloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, and nitrobenzene. Their inherent viscosities were in the range of 0.33–1.16 dL/g. Wide-angle X-ray spectra revealed that these polymers were amorphous in nature. All these polyimides were thermally stable, having initial decomposition temperatures above 500°C and glass-transition temperatures in the range of 248–281°C. The gas permeability of 4,4′-oxydiphthalic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride based polyimides was investigated with pure gases: He, H2, O2, Ar, N2, CH4, and CO2. A polyimide containing a  C(CF3)2 linkage showed a good combination of permeability and selectivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
A series of new polyimides were prepared from the reaction of 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) with various aromatic diamines. The properties of the a-BPDA polyimides were compared with those of polyimides prepared from the reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with the same aromatic diamines. Films of the a-BPDA polyimides had higher glass transition temperatures (Tgs) and less color than the corresponding s-BPDA polyimide films. Light transmission at 500 nm, solar absorptivity, and thermal emissivity were determined on certain films. Films of similar polyimides based upon a-BPDA and s-BPDA containing meta linkages and others containing para linkages were each cured at 250, 300, and 350 °C. The films were characterized primarily by Tg, color, optical transparency, tensile properties, dynamic mechanical thermal analysis, and coefficient of thermal expansion. The a-BPDA meta linked polyimide films had tensile strengths and moduli higher than films of the a-BPDA para linked polyimide. The same phenomenon was not observed for the s-BPDA meta and para linked polyimides. The chemistry, mechanical, and physical properties of the polymers and films are discussed.  相似文献   

10.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

11.
Feng Liu  Huili Yang 《Polymer》2006,47(3):937-945
This paper reports the synthesis of a novel maleimide-terminated thioetherimide oligomer and its copolymerization with reactive solvents bearing vinyl. Starting from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride, 2,2′,3,3′-thiodiphenyl tertracaboxylic dianhydride (3,3′-TDPA) and 3,3′,4,4′-thiodiphenyl tertracaboxylic dianhydride (4,4′-TDPA) were synthesized. Thereby, a novel maleimide-terminated thioetherimide oligomer was prepared from. 3,3′-TDPA, 4,4′-TDPA, 3,3′-dimethyl-4,4′-diaminodiphenylmethane (DMMDA) and maleic anhydride. Binary and ternary copolymer resin were derived from corresponding binary and ternary homogeous solution consisting of thioetherimide oligomer, reactive solvent N-vinylpyrrolidone (NVP) or N,N′-dimethylacrylamide (DMAA) and divinylbenzene (DVB) as modifier, initiated either by gamma ray irradiation or by benzoyl peroxide (BPO). Thermal and mechanical properties of copolymer resin are determined and compared in terms of the kind of reactive solvent, addition of modifier DVB. The effect of initiation approach on property of final copolymer resin were studied. Phase separation and sub-transition of ternary copolymer resin induced by BPO are observed, which could be accounted for by thermal movement of DMAA molecules during thermal initiation. Structure-property relationship of copolymer resin was discussed. The effect of monomer molar ratio of 3,3′-TDPA and 4,4′-TDPA on thermal and mechanical properties were investigated.  相似文献   

12.
A series of polyimides (PIs) based on 2,3,3′,4′-benzophenonetetracarboxylic dianhydride (2,3,3′,4′-BTDA) and 3,3′,4,4′-BTDA were prepared by the conventional two-step process. The properties of the 2,3,3′,4′-BTDA based polyimides were compared with those of polyimides prepared from 3,3′,4,4′-BTDA. It was found that PIs from 2,3,3′,4′-BTDA have higher glass transition temperature and better solubility without sacrificing their thermal properties. Furthermore the rheological properties of PMR-15 type polyimide resins based on 2,3,3′,4′-BTDA showed lower melt viscosity and wider melt flow region (flow window) compared with those from 3,3′,4,4′-BTDA. The structure-property relations resulted from isomerism were discussed.  相似文献   

13.
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 °C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.  相似文献   

14.
Xingzhong Fang 《Polymer》2004,45(8):2539-2549
Cis-1,2,3,4-cyclohexanetetracarboxylic dianhydride (cis-1,2,3,4-CHDA) was synthesized. It was found that under such conditions as heating or boiling in acetic anhydride, cis-1,2,3,4-CHDA could be converted to its trans-isomer. The process of thermal isomerization was monitored by 1H NMR spectra and the mechanism of conversion was proposed. Their absolute structures of cis- and trans-1,2,3,4-CHDAs were elucidated by single crystal X-ray diffraction. The polycondensations of cis- and trans-1,2,3,4-CHDAs with aromatic diamines such as 4,4′-oxydianiline (ODA), 4,4′-methylenedianiline (MDA), 4,4′-diamino-3,3′-dimethyldiphenylmethane (DMMDA), 4,4′-bis(4-aminophenoxy)benzene (TPEQ), 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) were studied. It is easy to obtain higher molecular weight polyimides from trans-1,2,3,4-CHDA using conventional one-step or two-step methods. However, higher molecular weight polyimides derived from cis-1,2,3,4-CHDA could not be prepared by the usual methods (solid content ca. 10%) owing to the trend of forming cyclic oligomers. Increasing the concentration of monomers could give higher molecular weight cis-polymers. All of the cis-polyimides were soluble at room temperature in aprotic polar solvents and phenolic solvents and some of them even soluble in chloroform and tetrahydrofuran, while the corresponding trans-polymers showed poor solubility as compared to cis-polymers. All of the polyimides showed good thermal stability with the 5% weight loss temperatures in air over 415 °C. Furthermore, polyimides derived from cis-1,2,3,4-CHDA have higher glass transition temperatures (Tgs) than corresponding trans-polyimides. The flexible polyimide films possessed a tensile modulus range of 2.1-3.6 GPa, a tensile strength range of 42-116 MPa, an elongation at break of 4-18%. These polyimides exhibited cutoffs at wavelengths around 270 nm and were entirely colorless. All the polyimides showed amorphous pattern according to Wide angle X-ray diffraction measurements. The differences of polymerization and properties were explained by the structural changes resulted from isomerism.  相似文献   

15.
Novel diamine monomers, 1,3-bis[3′-trifluoromethyl-4′(4″-amino benzoxy) benzyl] benzene (IV) and 4,4-bis[3′-trifluoromethyl-4′(4-amino benzoxy) benzyl] biphenyl (V) have been synthesized. These monomers lead to several novel fluorinated polyimides on reaction with different commercially available dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA) or 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane (6FDA). The polyimides prepared from above two monomers on reaction with 6FDA are soluble in several organic solvents such as N,N-dimethyl formamide (DMF), N,N-dimethyl acetamide (DMAc) and tetrahydrofuran (THF). The polyimides prepared from PMDA/IV is soluble in DMF and N-methyl pyrollidone (NMP) on heating, whereas V/PMDA is insoluble in all solvents. BTDA/IV polyimide is also soluble in NMP, DMF and DMAc. These polyimide films have low water absorption rate 0.2-0.7% and low dielectric constant 2.74-3.2 at 1 MHz. These polyimides showed very high thermal stability even up to 531 °C for 5% weight loss in synthetic air and glass transition temperature up to 316 °C (by DSC) in nitrogen. All polyimides formed tough transparent films, with tensile strength up to 148 MPa, a modulus of elasticity up to 2.6 GPa and elongation at break up to 31% depending upon the exact repeating unit structure.  相似文献   

16.
A series of thermally stable, tough, linear polyimides containing amide linkages was prepared. The new polyamide-imides were synthesized by reacting a group of isomers of diaminobenzanilide (DABA) with various dianhydrides, such as 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), and 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). The resulting polyamide-acids were thermally or chemically converted to the polyamide-imide (PAI). Twelve polyimides were synthesized from unsubstituted and N-methyl substituted amide diamines and their properties were compared with previously made polyamide-imides and the polyimide LARC-TPI. These polyimides exhibited high inherent viscosities and glass transition temperatures. They were made into tough, flexible films of which some showed good thermal stability and resistance to organic solvents. Overall, the mechanical properties of the PAI films were comparable to those of LARC-TPI with the 4,4′-systems exhibiting exceptional properties and crystallinity. These materials have potential as high temperature films, coatings and fibers, as well as molding and laminating resins.  相似文献   

17.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
J. R. Sasthav  F. W. Harris 《Polymer》1995,36(26):4911-4917
An investigation was carried out to improve polyimide processability via internal plasticization. This approach entailed the synthesis of a series of diamines in which the length of the alkyl group in alkyl 3,5-diaminobenzoates was varied from one to eighteen carbons. The polyimides obtained from several of these diamines were found to have increased solubility, a lower glass transition temperature and improved processability. Copolyimides were synthesized from 4,4′-oxydianiline, n-octadecyl 3,5-diaminobenzoate and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride. It was found that incorporating only 10% of the plasticizing diamine improved processability sufficiently enough to allow moulding of the neat resin. This was in marked contrast to the parent polymer which was an insoluble and infusible polyimide.  相似文献   

19.
A new kind of aromatic diamine monomer containing pyridine unit, 2,6-bis(4-aminophenoxy-4′-benzoyl)pyridine (BABP), was synthesized successfully. The Friedel-Crafts acylation of phenyl ethyl ether with 2,6-pyridinedicarbonyl chloride formed 2,6-bis(4,4′-dihydroxybenzoyl)-pyridine (BHBP), BHBP was changed into 2,6-bis(4-nitrophenoxy-4′-benzoyl)-pyridine (BNBP) by the nucleophilic substitution reaction of it and p-chloronitrobenzene, and BNBP was reduced with SnCl2 and HCl in ethanol to form the diamine monomer BABP finally, the diamine monomer BABP could be obtained in quantitative yield. A series of novel polyimides were prepared by polycondensation of BABP with various aromatic dianhydrides in N-methy-2-pyrrolidone (NMP) via the conventional two-step method. Experimental results indicated that some of the polyimides were soluble both in strong dipolar solvents (N-methy-2-pyrrolidone or N,N-dimethylacetamide) and in common organic solvents tetrahydrofuran. The resulting polyimides showed exceptional thermal and thermooxidative stability, no weight loss was detected before a temperature of 450 °C in nitrogen, and the values of glass-transition temperature of them were in the range of 208-324 °C. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

20.
Unsymmetrical and symmetrical diamine monomers containing trifluoromethyl groups, 2-trifluoromethyl-4,4′-diaminodiphenyl sulfide and 2,2′-bis(trifluoromethyl)-4,4′-diamino-diphenyl sulfide, were synthesized from 2-chloro-5-nitrobenzotrifluoride as a starting material in two steps, respectively. Diamine monomers were polymerized with PMDA, BPDA, BTDA, and ODPA using a solution imidization method with N-methyl-2-pyrrolidone as a solvent at 190 °C to obtain the corresponding polyimides. They had inherent viscosities that ranged from 0.54 to 0.71 dL/g in N-methyl-2-pyrrolidone at 30 °C. All of the synthesized polyimides showed good solubility in polar aprotic solvents and phenolic solvents regardless of the number of trifluoromethyl groups. The 5% weight loss temperatures of the polyimides are in the range of 534–561 °C in nitrogen, and 505–542 °C in air. The Tg values and the thermal expansion coefficients of these polymers are in the range of 234–325 °C and in the range of 47.4–63.2 ppm/°C, respectively. Also, all of the synthesized polyimides have relatively low refractive indices (around 1.6) and birefringence (below 0.36).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号