共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of inhomogeneous humidification on the local aging of the membrane electrode assemblies (MEAs) was investigated using segmented fuel cells under current cycling conditions. The active area of the MEA was divided into 8 segments along the flow channels. The effects of the local humidification of the MEA were measured by the high frequency resistance (HFR). It was found that the HFR of the first segment was largest due to the lower humidification. The concentration of water and water vapor was higher downstream, the MEA was humidified, and consequently the value of HFR also decreased. The fuel cells were operated at 60% RH, cell temperature 60 °C for uniform cell performance, with current cycling between 700 and 70 mA/cm2. The polarization curve showed less differentiation between each segment after 450 cycles and 150 hours of the current loading test. The MEA was exposed to cycling expansion and contraction during the drying and humidification processes, respectively. The results suggest that the membrane might experience mechanical degradation in downstream segments. In addition, the slope of the cyclic voltammetry (CV) curves increased from region 6 to region 8. The surface area of the catalyst also decreased due to the downstream water flooding, which might block the mass transfer and result in fuel starvation, carbon corrosion and catalyst degradation. 相似文献
2.
In a proton exchange membrane (PEM) fuel cell, local current density can vary drastically in the lateral direction across the land and channel areas. It is essential to know the lateral current density variations in order to optimize flow field design and fuel cell performance. Thus the objective of this work is to directly measure the lateral current density variations in a PEM fuel cell with a serpentine flow field. Five 1 mm-width partially-catalyzed membrane electrode assemblies (MEA), each corresponding to a different location from the center of the gas channel to the center of the land area are used in the experiments. Current densities for fuel cells with each of the partially-catalyzed MEAs are measured and the results provide the lateral current density distribution. The measurement results show that in the high cell voltage region, local current density is the highest under the center of the land area and decreases toward the center of the channel area; while in the low cell voltage region local current density is the highest under the center of the channel area and decreases toward the center of the land area. Besides, the effects of cathode flow rates on the lateral current density distribution have also been studied. Furthermore, comparisons have also been made by using air and oxygen in the cathode and it is found that when oxygen is used the local current density under the land is significantly enhanced, especially in the low cell voltage region. 相似文献
3.
Ch. Hartnig I. Manke N. Kardjilov A. Hilger M. Grünerbel J. Kaczerowski J. Banhart W. Lehnert 《Journal of power sources》2008
Neutron radiographic imaging is combined with locally resolved current density measurements to study the effects of local water content on the performance of the corresponding electrochemical active area in an operating PEM fuel cell. Liquid water agglomerates are detected, quantified and correlated with the activity of the respective area. At low currents, depletion of the reactant gas leads to a decreasing performance along the anodic flowfield channel. At high currents, an optimum humidification is reached in the central part of the fuel cell; close to the inlets respectively outlets, flooding and drying can be observed concurrently and cause a non-uniform current density distribution across the reactive area. The fast response of the local performance on water droplets migrating in the gas channel is tracked by short-term imaging taking place on a timescale of several seconds. 相似文献
4.
Jin Young Park Yeong Ho Lee In Seop Lim Young Sang Kim Min Soo Kim 《International Journal of Hydrogen Energy》2021,46(39):20678-20692
In the development process of a fuel cell, understanding the local current distribution is essentially required to achieve better performance and durability. Therefore, many developers apply a segmented fuel cell to observe current distribution under various operating conditions. With the application, experimental data is collected. This study suggests a utilization method for this collected data to develop a local current prediction model. The details of this neural network-based prediction model are introduced, including the pretreatment of the data. In the pretreatment process, current residual values are used for better prediction performance. As a result, the model predicted local current values with a 2.98% error. With the model, the effects of pressure, temperature, cathode relative humidity, and cathode flow rate on local current distribution trends are analyzed. Since the non-uniform current distribution of a fuel cell often leads to low performances or fast local degradation, the optimal operating condition to achieve current uniformity is acquired with an additional model. This model is developed by switching inputs and outputs of the local current prediction model. With the model application, the uniform current distribution is achieved with a standard deviation of 0.039 A/cm2 under the current load at 1 Acm?2. 相似文献
5.
D.J.L. Brett S. Atkins N.P. Brandon N. Vasileiadis V. Vesovic A.R. Kucernak 《Journal of power sources》2007
The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise their performance. Localised membrane resistance and current density measurements for a single channel polymer electrolyte fuel cell are presented for a range of operating conditions. The current density distribution results are compared with an analytical model that exhibited generally good agreement across a broad range of operating conditions. However, under conditions of high air flow rate, an increase in current is observed along the channel which is not predicted by the model. Under such circumstances, localised electrochemical impedance measurements show a decrease in membrane resistance along the channel. This phenomenon is attributed to drying of the electrolyte at the start of the channel and is more pronounced with increasing operating temperature. 相似文献
6.
The fill factor of a solar cell depends upon the series resistance, reverse saturation current, diode quality factor, operating current and voltage. Since the series resistance itself depends upon the operating current (or voltage), it makes the evaluation of fill factor very complicated. In this paper, we have evaluated the fill factor of a solar cell, taking into account operating current dependence of the series resistance. 相似文献
7.
This study presents a novel structure of catalyst layers of membrane electrode assemblies (MEAs) by adding graphene to platinum on carbon black (Pt/C) to improve the durability at high current density operation (3 A cm−2). Graphene displays outstanding low electrical resistance and has the advantage of high electron mobility. It is also used in lithium ion batteries to improve electrical performance such as high rate charge/discharge capability and cycle-life stability. In this study, three MEAs are compared, and graphene is used as an excellent conductive additive in catalyst layers for better electrons transport at high current density operation. The MEA coated Pt/C mixed with 0.1 wt% graphene shows best durability for 0.3 V h−1 which is almost 3.7 times better than that of without graphene additive (1.1 V h−1). The graphene additive effectively extends the durability of the MEA. Furthermore, the MEAs are analyzed by AC impedance. The impedance arc of the MEA coated with Pt/C only is getting worse, but those two coated with graphene show similar and smaller impedance arcs after high current density operation for 80 h. 相似文献
8.
Rui Lin Yuanming Weng Yi Li Xuwei Lin Sichuan Xu Jianxin Ma 《International Journal of Hydrogen Energy》2014
In order to improve cold start capability and survivability of proton exchange membrane fuel cell (PEMFC), a fundamental understanding of its internal behavior is required. In this study, the cold start processes of a PEMFC with different operating conditions have been investigated, and the characteristics of current density and temperature distributions are studied through in-situ experiments with a printed circuit board (PCB). It is found that the start ability of PEMFC is strong at −3 and −5 °C, but weak at −7 and −10 °C. Also the self-start ability can be enhanced by decreasing the initial current load. Polarization curves show almost no degradation after successful cold start at −3 and −5 °C, while the PEMFC degrades a lot after failed cold start at low temperature like −10 °C. Also electrochemical impedance spectroscopy (EIS) shows a big degradation after galvanostatic mode cold starts. Local current density of segmented cell results shows that the highest current density is initially near the inlet region and then quickly moves downstream, reaching to the region near the middle eventually during the successful cold start process. However, during the failed cold start process, the highest current density is initially near the inlet region of the flow channels and quickly moves down stream, reaching the upper left corner region (A1) before shut down eventually. For both successful and failed cold starts, the highest temperature can be observed near the middle of the cell after the reaching of the highest current density. 相似文献
9.
Yi Yu Xiao-Zi Yuan Hui Li Elton Gu Haijiang Wang Guangjin Wang Mu Pan 《International Journal of Hydrogen Energy》2012
Current distribution during the gas starvation and shutdown processes is investigated in a proton exchange membrane fuel cell with an active area of 184 cm2. The cell features a segmented cathode current collector. The response characteristics of the segmented single cell under different degrees of hydrogen and air starvation are explored. The current responses of the segment cells at different positions under a dummy load in the shutdown process are reported for various operating conditions, such as different dummy loads, cell temperatures, and gas humidities under no back pressure. The results show that applying a dummy load during the cell shutdown process can quickly reduce the cell potential and thereby avoid the performance degradation caused by high potentials. The currents of all the segment cells decrease with time, but the rate of decrease varies with the segment cell positions. The rate for the segment cells near the gas outlet is much higher than that of the segment cells near the gas inlet. The current of the segment cells decreases much more quickly at a lower gas humidity and high temperature. This study provides insights in the development of mitigation strategies for the degradation caused by starvation and shutdown process. 相似文献
10.
PtRu/CNTs and PtRuMo/CNTs catalysts have been synthesized by microwave-assisted polyol process and used as the anode catalysts for a direct methanol fuel cell (DMFC). The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The effect of different anode catalysts, membrane electrode assembly (MEA) activation, methanol concentration, methanol flow rate, oxygen flow rate and cell temperature on the DMFC performance has been investigated. The results show that the PtRu or PtRuMo particles with face-centered cubic structure are uniformly distributed on CNTs, and the addition of Mo to PtRu/CNTs makes the binding energies of each Pt species shift to lower values. PtRuMo/CNTs is a promising anode catalyst for DMFCs, and the appropriate operating conditions of the DMFC with PtRuMo/CNTs as the anode catalyst are MEA activation for 10 h, 2.0–2.5 M methanol at the flow rate of 1.0–2.0 mL/min, and oxygen at the flow rate of 100–150 mL/min. The DMFC performance increases significantly with an increase in cell temperature. 相似文献
11.
Interdigitated flow field is one of the commonly used designs in proton exchange membrane (PEM) fuel cells. The knowledge of how the current density differs under the inlet channel, the land and the outlet channel, is critical for flow field design and optimization. In this study, the current densities under the inlet channel, the land and the outlet channel in PEM fuel cell with an interdigitated flow field are separately measured using the technique of partially-catalyzed membrane electrode assemblies (MEAs). The experimental results show that the current density under the outlet channel is significantly lower than that under the inlet channel, and the current density under the land is higher than both channels at typical fuel cell operation voltages. Further experimental results show that the pattern of local current density remains the same with different cathode flow rates. 相似文献
12.
Rui Lin Chunhui Cao Jianxin Ma Erich Gülzow K. Andreas Friedrich 《International Journal of Hydrogen Energy》2012
The segmented fuel cell technology was applied to investigate the effects of the humidification conditions on the internal locally resolved performance and the stability of the fuel cell system. It was found at certain operating conditions, the time-dependent oscillation of current at potentio-static state appeared. The appearance of positive spikes of current indicated a temporary improved performance, while the negative current spikes indicated a temporary decreased performance. The periodic build-up and removal of liquid water in the cell caused unstable cell performance. Through the analyses of the evolution of the locally resolved current density distributions, the reasons for the positive or the negative spikes of current peaks with respect to a stationary value were found, which might be due to the drying-out of the membrane or the flooding of the membrane. The contour of the current density mapping differed to each other at the period of current peaks up or down, which might be due to different effect of the drying-out or flooding on the membrane. Through optimizing the relative humidity of anode (RHa) or cathode (RHc) of the fuel cell, the oscillation of the current disappeared and the performance of the cell became stable. RHc affects the performance of fuel cell much more obviously than RHa. The stability of the fuel cell system is also dependent on the imposed voltage. With the cell voltage decreased, the amplitude and the frequency of positive spikes of current increased. 相似文献
13.
Sang-Min Park Sang-Kyung Kim Seongyop Lim Doo-Hwan Jung Dong-Hyun Peck Won Hi Hong 《Journal of power sources》2009,194(2):818-823
The influences of various operating conditions on the current distribution of a direct methanol fuel cell with flow-fields of serpentine channels are investigated by means of a current-mapping method. The current densities generally deviate more from an even distribution when the cell temperature or flow rate of the cathode reactant is lower, or when the current loaded on the cell or the methanol concentration is higher. In addition, uneven current distributions decrease the cell performance. Relevant mass-transfer phenomena such as water flooding and methanol crossover are discussed. The characteristics of the channel configuration also affect the current density profiles. With a five-line serpentine channel, the current densities are lowered periodically where the flow direction is inverted due to the corner flow effect and the subsequent water accumulation. With a single serpentine channel, on the other hand, the current densities peak periodically where the flow direction is inverted due to enhanced air convection through the gas-diffusion layer. 相似文献
14.
In this article, a novel mathematical approach is proposed to determine the minimal proton exchange membrane fuel cell efficiency below which it is not recommended to operate the fuel cell. The objective of this proposal is to minimize the annual fuel cost and the electricity cost of a proton exchange membrane (PEM) fuel cell since both terms are efficiency dependent. A new concept developed in this article might be used as a valuable mathematical tool to determine the minimal efficiency required to operate a fuel cell in a reasonable fashion in order to make the fuel cell system technically and economically feasible. Two dimensionless mathematical criteria J1 and J2 were proposed for the annual fuel cost and electricity cost, respectively. A minimum fuel cell efficiency of
was obtained with J1 and J2 values of 2.7 and 0.026, respectively. 相似文献
15.
A two-dimensional two-phase model is used to analyze the effects of anisotropic electrical resistivity on current density and temperature distribution in a PEM fuel cell. It is observed that a higher in-plane electrical resistivity of the gas diffusion layer (GDL) adversely affects the current density in the region adjacent to the gas channel and generates slightly higher current densities in the region adjacent to the current collector. Also, in case of GDLs with high anisotropic thermal conductivity, the maximum and minimum temperatures in a cathode catalyst layer depend on the average current density and not the local current density. 相似文献
16.
This study investigates the effects of the flooding of the gas diffusion layer (GDL), as a result of liquid water accumulation, on the performance of a proton exchange membrane fuel cell (PEMFC). The transient profiles of the current generated by the cell are obtained using the numerical resolution of the transport equation for the oxygen molar concentration in the unsteady state. The dynamics of the system are captured through the reduction of the effective porosity of the GDL by the liquid water which accumulates in the void space of the GDL. The effects of the GDL porosity, GDL thickness and mass transfer at the GDL–gas channel interface on the evolution with time of the averaged current density are reported. The effects of the current collector rib on the evolution of the molar concentration of oxygen are also examined in detail. 相似文献
17.
D.S. Hussey D.L. Jacobson M. Arif J.P. Owejan J.J. Gagliardo T.A. Trabold 《Journal of power sources》2007
Neutron imaging has proven an invaluable tool for water metrology in operating proton exchange membrane fuel cells. Due to limitations in scintillator-based detector resolution, neutron imaging has been applied only to assessing the in-plane water distribution, without being able to distinguish water in the anode from the cathode. A new detector technology, based on micro-channel plates, enables a near order of magnitude improvement in the image resolution. This new detector technology will enable direct measurement of the through-plane water distribution in the gas diffusion layer, and enable the determination of the relative water content on the anode and cathode sides of a proton exchange membrane fuel cell. We report on the initial measurements with this new detector and discuss future measurement possibilities. 相似文献
18.
Andrew HigierHongtan Liu 《International Journal of Hydrogen Energy》2011,36(2):1664-1670
Previous studies have shown experimentally that the current density in a proton exchange membrane (PEM) fuel cell can be significantly higher under the land than under the channel in most practical operating cell voltage ranges [14]. In order to determine if the difference in electrical resistances under the land and the channel is a major cause for the observed local current density differences, a dedicated experimental study has been conducted to separately measure the electrical resistance under the land and channel and to isolate the in-plane (lateral) resistance from the total resistance of the gas diffusion electrode (GDE). First, a special test fixture is designed such that the electron paths under both the land and the channel are identical to those in a real operating fuel cell and the electrical resistance under each area can be measured separately. Using this test fixture, the total electrical resistances under the land and the channel are measured separately. The results show that the total electrical resistance under the channel is much higher than that under the land except in the case with very narrow channels. Secondly, in order to determine the source(s) of the difference in electrical resistance under the different areas, the in-plane resistances of the GDE and the gas diffusion layer (GDL) are measured. The results show that the difference in lateral resistance between the areas under the land and the channel is negligibly small. Thirdly, basic analyses show that the difference in direct voltage loss caused by the higher electrical resistance under the channel is significant; besides, the resistance difference can result in a large enough variations in local overpotential to cause significant local current density differences. Therefore, the difference in local electrical resistance under the land and channel is large enough to be a major cause for the observed local current density differences. 相似文献
19.
This paper reports the development of components in a stack assembly and measurements of electrochemical characteristics of a proton exchange membrane (PEM) fuel cell stack. A novel test fixture together with a superposition approach is utilized to assess the Ohmic resistance across the stack. Then, a Tafel-kinetic equation for describing the voltage and current curve for all processes including electrode activation, Ohmic resistance and mass transfer was reported. It was found that the Ohmic resistance inside the fuel cell stack was markedly impacted by clamping torque of the stack. An optimum clamping torque of 90 kgf cm was determined based on measured Ohmic resistance. Uniformity and stability in the stack was verified by measuring cell voltage and temperature distribution. Finally, stack durability was tested by impelling a buggy over a relatively long duration. 相似文献
20.
O. Shamardina A. Chertovich A.A. Kulikovsky A.R. Khokhlov 《International Journal of Hydrogen Energy》2010
We develop a simple analytical model of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated against experimental results obtained in our group. The model is pseudo two dimensional, steady-state and isothermal, it accounts for the crossover of reactant gases through the membrane and it can be solved analytically. The role of the crossover is considered in detail. 相似文献