首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
报道了不同的铜含量(Cu/(Ga+In)=0.748~0.982)对Cu(In,Ga)Se2 (CIGS)薄膜微结构的影响.文章中的CIGS薄膜采用磁控溅射金属预置层后硒化的方法制备, 其X射线衍射谱(XRD)中一系列黄铜矿结构CIGS(CH-CIGS)相的衍射峰确认了CH-CIGS相的存在.对CIGS薄膜拉曼光谱的分析表明, 随着铜含量的上升, CIGS薄膜经历了CH-CIGS和有序缺陷化合物(OVC)混合相、CH-CIGS单相、CH-CIGS和CuxSe混合相三种状态.进一步的分析显示, CIGS薄膜拉曼峰的半高宽随铜含量变化, 并在Cu/(Ga+In)=0.9附近时达到最小值, 这说明此时CIGS薄膜具有更好的结晶度和更少的无序性.此外还得到了CIGS薄膜拉曼峰半高宽与铜含量的经验关系公式.这些研究表明拉曼光谱能比XRD更加灵敏地探测CIGS薄膜的微结构, 可望作为一种无损和快速测量方法, 用于对CIGS薄膜晶相和铜含量的初步估计.  相似文献   

2.
讨论了Ga含量对四元有序缺陷化合物Cu(In,Ga)3Se5薄膜的晶格振动模式的影响,室温下CuIn3Se5与CuGa3Se5 A1模式峰位分别位于153cm-1和164cm-1,Ga含量的增加引起晶格扭曲系数以及阴离子Se位移参数的增加,相应改变了Cu-Se以及In/Ga-Se的键长及其键拉伸力学常数,从而影响了A1模式峰位的移动.  相似文献   

3.
Cu(In,Ga)_3Se_5薄膜结构的Raman研究   总被引:1,自引:1,他引:0  
讨论了Ga含量对四元有序缺陷化合物Cu(In,Ga)3Se5薄膜的晶格振动模式的影响,室温下CuIn3Se5与Cu-Ga3Se5A1模式峰位分别位于153cm-1和164cm-1,Ga含量的增加引起晶格扭曲系数以及阴离子Se位移参数的增加,相应改变了Cu-Se以及In/Ga-Se的键长及其键拉伸力学常数,从而影响了A1模式峰位的移动  相似文献   

4.
周期顺序蒸发工艺生长的Cu(In,Ga)Se_2薄膜结构   总被引:4,自引:1,他引:3  
采用新颖的周期顺序蒸发和真空硒化退火工艺生长出p型CuIn0 7Ga0 3 Se2 薄膜.通过XPS谱、Raman谱、XRD谱分析了预生长层以及硒化后的CuIn0 7Ga0 3 Se2 薄膜,对四元化合物Cu(In ,Ga)Se2 的Raman谱进行了讨论,并观察到Ga对A1模式峰位的移动影响,同时发现薄膜倾向于沿(112 )晶面生长,薄膜贫Cu会加剧(2 2 0 ) / (2 0 4)表面自发分解成{ 112 }小晶面.研究表明,薄膜具有良好的电学特性和结构特性.  相似文献   

5.
共蒸发三步法制备CIGS薄膜的性质   总被引:1,自引:0,他引:1  
采用PID温度控制器控制共蒸发设备中蒸发源及衬底加热的温度,以三步法工艺制备CIGS(Cu(In,Ga)Se2)薄膜,通过恒功率加热衬底测试温度的变化,可实现在线组分监测,得到CIGS薄膜的组成重现性很好.CIGS薄膜的表面光洁,粗糙度多数小于10nm.但是组成相同的CIGS薄膜,其结晶择优取向可能不同,主要有(112)和(220)/(204)两种;其结晶形貌也有很大的不同,晶粒粗大且成柱状的薄膜电池效率高,虽然从Cu/(In Ga)<1的组成可以认为CIGS薄膜为贫Cu结构,但Hall测试多数CIGS薄膜呈p型,少数呈n型.  相似文献   

6.
采用PID温度控制器控制共蒸发设备中蒸发源及衬底加热的温度,以三步法工艺制备CIGS(Cu(In,Ga)Se2)薄膜,通过恒功率加热衬底测试温度的变化,可实现在线组分监测,得到CIGS薄膜的组成重现性很好.CIGS薄膜的表面光洁,粗糙度多数小于10nm.但是组成相同的CIGS薄膜,其结晶择优取向可能不同,主要有(112)和(220)/(204)两种;其结晶形貌也有很大的不同,晶粒粗大且成柱状的薄膜电池效率高,虽然从Cu/(In+Ga)<1的组成可以认为CIGS薄膜为贫Cu结构,但Hall测试多数CIGS薄膜呈p型,少数呈n型.  相似文献   

7.
采用新颖的周期顺序蒸发和真空硒化退火工艺生长出p型CuIn0.7Ga0.3Se2薄膜.通过XPS谱、Raman谱、XRD谱分析了预生长层以及硒化后的CuIn0.7Ga0.3Se2薄膜,对四元化合物Cu(In,Ga)Se2的Raman谱进行了讨论,并观察到Ga对A1模式峰位的移动影响,同时发现薄膜倾向于沿(112)晶面生长,薄膜贫Cu会加剧(220)/(204)表面自发分解成{112}小晶面.研究表明,薄膜具有良好的电学特性和结构特性.  相似文献   

8.
研究了Na掺入对低温沉积柔性聚酰亚胺(PI)衬底Cu(In,Ga)Se2(CIGS)薄膜的结构和电学特性影响。研究结果表明:Na元素的掺入使Ga元素的扩散受到了阻滞,但对CIGS薄膜晶粒尺寸没有明显的影响,少量的Na可提高CIGS薄膜的载流子浓度和降低电阻率;Na的掺入可明显提高CIGS薄膜太阳电池的器件特性,通过优化掺Na工艺,制备的柔性PI衬底—CIGS薄膜太阳电池的最高转换效率达到10.4%。  相似文献   

9.
姜伟龙 《光电子.激光》2010,(11):1657-1659
为改善聚酰亚胺(PI)衬底Cu(In,Ga)Se2(CIGS)薄膜的附着性,提出在NaF沉积前预先在Mo层上蒸发沉积100nm厚的In-Ga-Se(IGS)薄膜的新掺Na工艺。结果表明:这种IGS-NaF-CIGS式新工艺可显著改善CIGS薄膜的附着,而且CIGS薄膜材料和器件特性没有显著退化;新工艺促进了NaInSe2的生成,减少了In-Se二元相的残余,但也造成薄膜电阻率的升高和电池填充因子的下降,进而导致制备的PI衬底CIGS电池的转换效率由9.8%降至9.0%。综合考虑附着性的改善和器件效率的轻微下降,新工艺利大于弊,有很好的应用前景。  相似文献   

10.
报道了不同的铜含量(Cu/(Ga+In)=0.748~0.982)对Cu(In,Ga)Se_2(CIGS)薄膜微结构的影响.文章中的CIGS薄膜采用磁控溅射金属预置层后硒化的方法制备,其X射线衍射谱(XRD)中一系列黄铜矿结构CIGS(CH-CIGS)相的衍射峰确认了CH-CIGS相的存在.对CIGS薄膜拉曼光谱的分析表明,随着铜含量的上升,CIGS薄膜经历了CH-CIGS和有序缺陷化合物(OVC)混合相、CH-CIGS单相、CH-CIGS和CuxSe混合相三种状态.进一步的分析显示,CIGS薄膜拉曼峰的半高宽随铜含量变化,并在Cu/(Ga+In)=0.9附近时达到最小值,这说明此时CIGS薄膜具有更好的结晶度和更少的无序性.此外还得到了CIGS薄膜拉曼峰半高宽与铜含量的经验关系公式.这些研究表明拉曼光谱能比XRD更加灵敏地探测CIGS薄膜的微结构,可望作为一种无损和快速测量方法,用于对CIGS薄膜晶相和铜含量的初步估计.  相似文献   

11.
Texture and morphology variations in co‐evaporated (In,Ga)2Se3 and Cu(In,Ga)Se2 (CIGS) films grown with various Se source conditions during growth were studied. The Se species of simply evaporated, large molecular Se (E‐Se, low‐sticking coefficient), and RF‐plasma cracked atomic Se (R‐Se, high sticking coefficient) were used in the present work. (In,Ga)2Se3 precursor films, which were prepared during the first stage of CIGS film growth by the three‐stage process, showed systematic variations in texture and Na distribution profile with varying evaporative Se (E‐Se) flux. The properties of CIGS films and solar cells also showed systematic variations, and the open‐circuit voltage (Voc) and fill factor were found to be especially sensitive to the E‐Se flux. R‐Se grown (In,Ga)2Se3 precursor films featured granular morphology with strong (105) and (301) peaks in the diffraction pattern, and the texture was very similar to an E‐Se grown film fabricated with a Se to group III metal (In + Ga) flux ratio (P[Se]/[In + Ga]) of about 6, although the nominal P[Se]/[In + Ga] used for an R‐Se source was very small and less than 0.5. The R‐Se grown CIGS films displayed, however, highly dense surfaces and larger grain sizes than E‐Se grown CIGS films. The controllability of film morphology and the Na diffusion profile in (In,Ga)2Se3 and CIGS films with various Se source conditions are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Ga segregation at the backside of Cu(In,Ga)Se2 solar cell absorbers is a commonly observed phenomenon for a large variety of sequential fabrication processes. Here, we investigate the correlation between Se incorporation, phase formation and Ga segregation during fast selenisation of Cu–In–Ga precursor films in elemental selenium vapour. Se incorporation and phase formation are analysed by real‐time synchrotron‐based X‐ray diffraction and fluorescence analysis. Correlations between phase formation and depth distributions are gained by interrupting the process at several points and by subsequent ex situ cross‐sectional electron microscopy and Raman spectroscopy. The presented results reveal that the main share of Se incorporation takes place within a few seconds during formation of In–Se at the top part of the film, accompanied by outdiffusion of In out of a ternary Cu–In–Ga phase. Surprisingly, CuInSe2 starts to form at the surface on top of the In–Se layer, leading to an intermediate double graded Cu depth distribution. The remaining Ga‐rich metal phase at the back is finally selenised by indiffusion of Se. On the basis of a proposed growth model, we discuss possible strategies and limitations for the avoidance of Ga segregation during fast selenisation of metallic precursors. Solar cells made from samples selenised with a total annealing time of 6.5 min reached conversion efficiencies of up to 14.2 % (total area, without anti‐reflective coating). The evolution of the Cu(In,Ga)Se2 diffraction signals reveals that the minimum process time for high‐quality Cu(In,Ga)Se2 absorbers is limited by cation ordering rather than Se incorporation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Single‐layered Cu‐In‐Ga‐Se precursors were fabricated by one‐step sputtering of a single quaternary Cu(In,Ga)Se2 (CIGS) chalcogenide target at room temperature, followed by post selenization using Se vapor obtained from elemental Se pellets. The morphological and structural properties of both as‐deposited and selenized films were characterized by X‐ray diffraction (XRD), Raman spectroscope and scanning electron microscope (SEM). The precursor films exhibited a chalcopyrite structure with a preferential orientation in the (112) direction. The post‐selenization process at high‐temperature significantly improved the quality of the chalcopyrite CIGS. The CIGS layers after post‐selenization were used to fabricate solar cells. The solar cell had an open‐circuit voltage Voc of 0.422 V, a short‐circuit current density J = 24.75 mA, a fill factor of 53.29%, and an efficiency of 7.95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The CIGS thin films are prepared by co-evaporation of elemental In, Ga and Se on the substrates of Mo-coated glasses at400℃ followed by co-evaporation of elemental Cu and Se at 550℃. We study the structural and electrical properties usingXRD, XRF and Hall effect measurements. In general, Cu(In,Cra)5Se8 phase exists when Cu/(In Ga) ratio is from 0.17 to0.27, Cu(In,Ga)3Se5 phase exists for Cu/(In Ga) ratio between 0.27 and 0.41, Cu2(In,Ga)4Se7 and Cu(In,Ga)2Se3.5 phasesexist for Cu/(In Ga) ratio between 0.41 and 0.61, and OVC(or ODC) and CuIn0.7Ga0.3 Se2 phases exist when Cu/(In Ga)ratio is from 0.61 to 0.88. With the increase of Cu/(In Ga) ratio, the carrier concentrations of the films gradually increase,but the electrical resistivity gradually decreases.  相似文献   

15.
Reduction of the absorber thickness combined with deposition on a flexible substrate is a technically viable strategy to allow lower cost manufacturing of Cu(In,Ga)Se2 solar modules. Flexible plastic substrates, however, require a low‐temperature deposition process and appropriate control of the band gap grading for achieving high efficiencies. In this work, we developed solar cells on polyimide films using evaporated Cu(In,Ga)Se2 absorbers with thickness of 0.8–1.3 µm. The double Ga‐grading profile across the absorber thickness was modified by varying the maximum Cu excess at the end of the second stage or by adapting the In and Ga evaporation flux profiles during the growth process. By minimizing the Cu excess during the intermediate stage of the growth process, no loss in open circuit voltage and fill factor is observed compared with a device having a thicker absorber. Efficiency of 16.3% was achieved for cells with an absorber thickness of 1.25 µm. Insufficient absorption of photons in the long wavelength region is mainly responsible for current loss. By changing the In and Ga evaporation profiles, the shape and position of the Ga notch were effectively modified, but it did not lead to a higher device performance. Modifications of the Ga compositional profile could not help to significantly reduce absorption losses or increase charge carrier collection in absorbers with thickness below 1 µm. Changes of open circuit voltage and fill factor are mostly related to differences in the net acceptor density or the reverse saturation current rather than changes of the double Ga grading. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Cu(In,Ga)Se2 (CIGS) thin films co‐evaporated by 1‐stage, 2‐stage, and 3‐stage processes have been studied by spectroscopic ellipsometry (SE). The disappearance of a Cu2‐xSe optical signature, detected by real time SE during multistage CIGS, has enabled precise endpoint control. Band gap energies determined by SE as depth averages show little process variation for fixed [Ga]/([In] + [Ga]) atomic ratio, whereas their broadening parameters decrease with increasing number of stages, identifying successive grain size enhancements. Refined SE analysis has revealed band gap profiling only for 3‐stage CIGS. Solar cells incorporating these absorbers have yielded increased efficiencies in correlation with phase control, grain size, and band gap profiling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Among different process routes for Cu(In,Ga)Se2 (CIGS) solar cells, sufficient Se supply is commonly required to obtain high‐quality CIGS films. However, supplying extra Se increases the cost and the complexity. In this work, we demonstrate that extra Na incorporation can substantially increase efficiency of Se‐deficient CIGS solar cells, fabricated by sputtering from a quaternary CIGS target without extra Se supply, from 1.5% to 11.0%. The Se‐deficient CIGS device without extra NaF reveals a roll‐over I–V curve at room temperature as well as significantly reduced Jsc and fill factor at low temperatures. The electrical characteristics of Se‐deficient CIGS films are well explained and modeled by the low p‐type doping due to high density of compensating donors and the presence of deep defects possibly originating from the anti‐bonding levels of Se vacancies. The significant improvement after extra Na incorporation is attributable to the Na‐induced passivation of Se vacancies and the increased p‐type doping. Our result suggests that extra Na addition can effectively compensate the Se deficiency in CIGS films, which provides a valuable tuning knob for compositional tolerance of absorbers, especially for the Se‐deficient CIGS films. We believe that our findings can shine light on the development of novel CIGS processes, distinct from previous ones fabricated in Se‐rich atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we show that a reactive co‐sputtering process using metallic CuGa and In targets; an Ar:H2Se atmosphere is well suited for the deposition of photoactive Cu(In,Ga)Se2 (CIGSe) absorber layers for thin‐film solar cells in a single process step. The achievement of single‐phase and well‐crystallized layers is thereby no major problem if a sufficiently high H2Se content and substrate temperatures in the range of 400–500 °C are used. However, in order to achieve the desired Cu‐poor film stoichiometry, which is crucial for the device performance, it has to be considered already that, at moderate substrate temperatures in the range of 400–500 °C, indium has a strong tendency to re‐evaporate from the film surface if the film composition is Cu‐poor. If excess indium is supplied, this effect can lead to a self‐adjustment of the film composition. This allows a very wide process window in a one‐stage process concerning the supply ratio from the two targets of [Cu]/([In] + [Ga])supply ≈ 0.35–0.8. However, the maximum efficiencies achievable with such a process are limited to 11.7% because an adequate Cu‐poor composition can only be achieved with significant Cu‐poor conditions, which allow only a low material quality. By using an improved process with an intermediate Cu‐rich composition and a final Cu‐poor stage, the absorber quality could be significantly improved; efficiencies of up to 14.3% have been achieved with CIGSe films prepared on Na‐doped Mo back contacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号