首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
报道了一种基于InGaAs/InP雪崩光电二极管、1.25 GHz正弦波门控及贝塞尔低通滤波器的1.25 GHz高速短波红外单光子探测器.通过调整比较电路的鉴别电平, 实验研究了单光子探测器雪崩信号幅度随反向直流偏压的变化.随着鉴别电平的提高, 单光子探测器的探测效率及暗计数率均呈指数衰减, 而后脉冲概率先增大到一个峰值, 然后减小.研究表明, 为获得更高的性能, 需要尽量降低单光子探测器的鉴别电平.  相似文献   

2.
基于InGaAs/InP雪崩光电二极管,讨论吸收层厚度和少子寿命以及倍增层厚度和少子寿命对暗电流的影响。研究表明,吸收层厚度影响热产生复合(shockley-read-hall, SRH)和缺陷辅助隧穿(trap-assisted tunneling, TAT)暗电流大小,而倍增层厚度则对TAT和直接隧穿(band-band tunneling, BBT)暗电流影响较大。少子寿命可以等效为缺陷的影响,因而对与缺陷相关的SRH和TAT暗电流影响较大。对暗电流机理的分析,为研究低暗电流高信噪比的雪崩器件提供良好的理论预测。  相似文献   

3.
采用Si/InP低温晶片键合技术,设计并制作了InGaAs/Si雪崩光电二极管.器件利用InGaAs做吸收层,Si做增益层,光敏面大小50μm×70μm;测试结果表明器件有正常的光响应特性,击穿电压为41 V,暗电流为99 nA,此时光电流比暗电流高3个数量级.  相似文献   

4.
研制了高速、高效、低噪声的InGaAs/InGaAsP/InP长波长(1.0~1.7μm)台面型雪崩光电二极管(φ=75μm),器件采用分离的吸收区、雪崩区和能隙过渡区的SAGM结构。研究了器件最佳结构参数设置、在InP上匹配生长InGaAs、InGa AsP及其厚度和载流子浓度的控制问题。器件最大倍增因子大于50,灵敏度大于0.70μA/μW,暗电流I_D的典型值约为20nA(V_r=0.9V_B)。  相似文献   

5.
平面型雪崩光电二极管(APD)在结弯曲处具有更高的电场,易导致结边缘的提前击穿.运用FEMLAB软件对多级台阶结构的平面型InP/lnGaAs APD的电场分布进行了二维有限元模拟,在表面电荷密度为5×10~(11)cm~(-2)时分析了台阶级数、台阶高度等因素对边缘提前击穿特性的抑制程度.通过理论研究对平面InP/InGaAS APD进行了优化.
Abstract:
For planar-type avalanche photodiode (APD), it is hard to suppress edge pre-breakdown with double-stepped p-region profile. In order to suppress the edge pre-breakdown, amulti-stepped p-region is proposed and studied. A finite element two-dimensional (2-D) simulation is performed to study the electric field of planar-type APD with multi-stepped p-region. The effects of the step number and deep in suppressing the edge pre-breakdown are analyzed and the planar-type APD structure is optimized theoretically.  相似文献   

6.
通过理论计算和对比实验研究了InGaAs/InP单光子雪崩光电二极管中InP顶层掺杂浓度对于器件性能的影响.理论结果显示,InP顶层的掺杂浓度越低越有利于抑制边缘击穿,降低隧穿暗载流子产生速率,提高雪崩击穿几率.实验结果显示,顶层非故意掺杂的器件在223K下获得了20%的单光子探测效率和1kHz的暗计数率,其单光子探测效率比顶层掺杂浓度为5×10~(15)/cm~3的器件高3%~8%,而暗计数率低一个量级.结果表明,降低InP顶层的掺杂浓度有利于提高器件性能.  相似文献   

7.
本文结合研制的InGaAs/InP SAGM雪崩光电二极管,讨论了SAGM-APD的技术界线和最佳工作特性。  相似文献   

8.
如何选用雪崩光电二极管光学测量在各种科学、医学和工业应用中起着重要作用。简单光学系统用廉价光电池进行光探测,但许多应用要求有较高灵敏度和精度。传统方法是用光电倍增管获得高灵敏度。然而,光子水平灵敏的光电倍增管价格高昂,而且易碎、对磁场灵敏、与尺寸大小...  相似文献   

9.
本文以现有的理论研究和实验研究的结果为依据,提出了长波长高速及超高速雪崩光电二极管(APD)的两设计原则:一是在雪崩管内建立合理的电场强度分布;二是尽可能减少电寄生。这是得到高速或超高速响应、高量子效率以及低噪声性能的根本途径。  相似文献   

10.
一种新型雪崩光电探测器(APD)在1.3和1.55μm波长处已显示高达35的电流增益和9GHz以上的3dB带宽。据加州大学圣巴巴拉分校的研究人员说,这些指标约为目前可购到的最优商品化器件增益-带宽积构3信和以前雪崩光电探测器增益-带宽积的2倍(图1)。高速光纤通讯需要快速探测器,高速时的灵敏探测器能使信号传输更长的距离。目前,高速时选用的探测器是PIN光电二极管,它快速但不特别灵敏。PIN器件一般与使输出放大的场效应晶体管(FET)配用,有时也用光学放大器来增大信号,然后再输到探测器。然而,这两种放大器增加了系统的费用和…  相似文献   

11.
文章报道了90nm栅长的晶格匹配InP基HEMT器件。栅图形是通过80kV的电子束直写的,并采用了优化的三层胶工艺。器件做在匹配的InAlAs/InGaAs/InP HEMT材料上。当Vds=1.0V时,两指75μm栅宽器件的本征峰值跨导达到720ms/mm,最大电流密度为500mA/mm,器件的阂值电压为.0.8V,截止频率达到127GHz,最大振荡频率达到152GHz。  相似文献   

12.
杨易  施惠英 《半导体光电》1994,15(2):109-112
文章简要地介绍了InGaAs/InP PIN PD阵列的制作现状及其应用和发展趋势。  相似文献   

13.
重点研究了InGaAs/InP SPAD的隧道贯穿电场、雪崩击穿电场、雪崩宽度与过偏电压的关系,提出了过偏电压的计算方法.分析了InGaAs/InP SPAD的基本特性即探测效率、暗计数率与其过偏电压、工作温度、量子效率、电场分布的依赖关系,提出了一种单光子InGaAs雪崩二极管的设计方法.设计制作了InGaAs/InP SPAD,并在门控淬灭模式下进行了单光子探测实验.结果表明:对于200m的SPAD,在过偏2 V、温度-40 ℃条件下,探测效率(PDE) 20%(1 550 nm)、暗计数率(DCR)20 kHz;对于50m的SPAD,在过偏2.5 V、温度-40 ℃条件下,探测效率(PDE) 23%(1 550 nm)、暗计数率(DCR)2 kHz.最后对实验结果进行了分析和讨论.  相似文献   

14.
We have fabricated reduced area InGaAs/InP DHBTs for high speed circuit applications. To produce the small dimensions required, a process involving both wet chemical and ECR plasma etching was developed. Optical emission spectroscopy was used for end-point detection during plasma etching. With this improved process, an ft of 170 and fmax of 200 GHz were achieved for 1.2 × 3 μm2 emitter size devices with a 500 ? base.  相似文献   

15.
Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication. However, even with well-designed structures and well-controlled operational conditions, the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche process and the growth quality of InGaAs/InP materials. It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present. In this paper, we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer. The quantum efficiency of this device reaches 83.2%. We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinusoidal pulse gating. The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination, and the detection of small avalanche pulse amplitude signal is realized. The maximum detection efficiency is 55.4% with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96 × 10−17 W/Hz1/2 at 247 K. Compared with other reported detectors, this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature.  相似文献   

16.
An InGaAs/InP avalanche photodiode (APD) with a sectional InGaAsP/InP charge layer at the heterointerface between the InGaAs absorption and InP multiplication region has been designed, fabricated and tested. We demonstrate a new APD structure that utilizes the sectional 140 nm thin charge layer and a 500 nm thin multiplication layer. The band diagram, electrical field distribution and current-voltage (I-V) characteristics up to punch-through voltage have been simulated. The fabricated mesa structure photodiode shows responsivity 0.9 A/W at 1310 nm at 20 V and avalanche gain up to 10 near breakdown voltage 36 V. The measured results revealed that the sectional charge layer could be used for control of the electric field profile in the APD structure.  相似文献   

17.
首先给出在InP衬底上利用MOCVD法生长InP、InGaAs的生长条件,而后分别给出了InP/InP的生长特性,InGaAs/InP的组份控制和生长特性及生长温度对InGaAs特性的影响。  相似文献   

18.
研究了全固态源分子束外延(MBE)生长InGaAs/InP异质结界面扩散对InGaAs外延薄膜电学和光学性质的影响.通过X射线衍射、变温霍尔测试和变温光致发光等方法对InGaAs薄膜样品进行细致研究.发现在InGaAs/InP界面之间插入一层利用As_4生长的InGaAs过渡层,能够显著改善上层InGaAs(利用As_2生长)外延薄膜的电学性能,其低温迁移率显著提高.同时荧光峰反常蓝移动消失,光学性质有所改善.研究表明利用As_4生长InGaAs过渡层,可显著降低As在InP中反常扩散,获得陡峭的InGaAs/InP界面,从而提高InGaAs材料电学和光学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号