首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   

2.
3.
Gong X  Liu A  Ming X  Deng P  Jiang Y 《FEBS letters》2010,584(23):4711-4716
p53 plays a fundamental role in the maintenance of genome integrity after DNA damage, deciding whether cells repair and live, or die. However, the rules that govern its choice are largely undiscovered. Here we show that the functional relationship between p38 and p53 is crucial in defining the cell fate after DNA damage. Upon low dose ultraviolet (UV) radiation, p38 and p53 protect the cells from apoptosis separately. Conversely, they function together to favor apoptosis upon high dose UV exposure. Taken together, a UV-induced, dose-dependent interaction between p38 and p53 acts as a switch to determine cell fate.

Structured summary

MINT-8050838: p53 (uniprotkb:P02340) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti bait coimmunoprecipitation (MI:0006)MINT-8050948: p53 (uniprotkb:P04637) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

4.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   

5.
Damage or stress in many organelles may trigger apoptosis by several not yet fully elucidated mechanisms. A cell death pathway is induced by endoplasmic reticulum (ER) stress elicited by the unfolded protein response and/or by aberrant Ca(2+) signalling. Reticulon-1C (RTN-1C) belongs to the reticulon family, neuroendocrine-specific proteins localized primarily on the ER membrane. In the present study, we demonstrate that RTN-1C is able to modulate, in a mutually exclusive way, the cellular sensitivity to different apoptosis pathways in human neuroblastoma cells. In fact, the increase of RTN-1C protein levels per se results in ER stress-induced cell death, mediated by an increase of cytosolic Ca(2+), and significantly sensitizes cells to different ER stress inducers. In line with these findings, the reduction of RTN-1C, by antisense DNA expression, reduced the sensitivity to ER-stressors. In the presence of high RTN-1C levels, genotoxic drugs become ineffective as a consequence of the cytoplasm translocation of p53 protein, while the silencing of endogenous RTN-1C results in the potentiation of the genotoxic drugs action. These data indicate that RTN-1C is able to modulate the cellular sensitivity to different apoptotic pathways representing a promising molecular target for new drug development.  相似文献   

6.
A method for the extraction and purification of PrP(C), in its native monomeric form, from outdated human platelet concentrates is described. Both calcium ionophore platelet activation and lysis in Triton X-100 were evaluated as methods for the extraction of soluble platelet PrP(C) in its monomeric form. Following platelet activation, the majority of released PrP(C) was detected as a disulphide linked high molecular weight complex, which under reducing conditions could be separated into what appear to be stable non-disulphide linked PrP dimers or PrP covalently linked to another as yet unidentified protein. This phenomenon appears to be unique to activation since only monomeric PrP(C) was detected following lysis of resting platelets. Subsequently, PrP(C) was purified from the Triton X-100 lysate by sequential cation ion exchange and Cu2+ affinity chromatography. From 10 L of outdated platelet concentrate, we were able to recover 1.29 mg PrP(C) at a purity of 92%.  相似文献   

7.
Embryonic stem cell test (EST) is the only generally accepted in vitro method for assessing embryotoxicity without animal sacrifice. However, the implementation and application of EST for regulatory embryotoxicity screening are impeded by its technical complexity, long testing period, and limited endpoint data. In this study, a high throughput embryotoxicity screening based on mouse embryonic stem cells (mESCs) expressing enhanced green fluorescent protein (EGFP) driven by a human survivin promoter and a human cytomegalovirus promoter, respectively, was developed. These EGFP expressing mESCs were cultured in three-dimensional (3D) fibrous scaffolds in microbioreactors on a multiwell plate with EGFP fluorescence signals as cell responses to chemicals monitored noninvasively in a high throughput manner. Nine chemicals with known developmental toxicity were used to validate the survivin-based embryotoxicity assay, which showed that strongly embryotoxic compounds such as 5-fluorouracil, retinoic acid, and methotrexate downregulated survivin expression by more than 50% in 3 days, while weakly embryotoxic compounds such as boric acid, methoxyacetic acid, and tetracyclin showed modest downregulation effect and nonembryotoxic saccharin, penicillin G, and acrylamide had negligible downregulation effect on survivin expression, confirming that survivin can be used as a molecular endpoint for high throughput screening of embryotoxicants. The potential developmental toxicity of three Chinese herbal medicines were also evaluated using this assay, demonstrating its application in in vitro developmental toxicity test for drug safety assessment.  相似文献   

8.
A comparison was made of membrane protein patterns of various Aeromonas salmonicida strains, initially isolated from different habitats with respect to fish species affected, pathological entity, and geographic location of the outbreak of the disease. A major protein with a molecular weight of 54 000 was found in all autoagglutinating strains, whereas this protein is present in low amounts, or not at all, in non-autoagglutinating strains. Evidence for a causal relationship between the presence of this protein and the phenomenon of autoagglutination came from the observation that a change of the growth medium led simultaneously to an almost complete loss of the additional cell envelope protein and the property of autoagglutination. As it has already been reported that autoagglutination is correlated with the presence of an additional cell surface layer, we hypothesize that the additional cell envelope protein is the (major) subunit of this layer. The application of the gel immuno radio assay, an immunological technique suited to detect antigens in a gel, revealed that the additional cell envelope proteins of all tested strains are immunologically related. The possibility to the use of this protein as a component of a vaccine against A. salmonicida infections is discussed.  相似文献   

9.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

10.
The identification and optimization of a novel series of centrally efficacious gamma secretase modulators (GSMs) offering an alternative to the privileged aryl imidazole motif is described. Chiral bicyclic tetrahydroindazolyl amine substituted triazolopyridines were identified as structurally distinct novel series of GSMs. Representative compound BI-1408 ((R)-42) was demonstrated to be centrally efficacious in rats at a 30?mg/kg oral dose.  相似文献   

11.
The incidence of Alzheimer’s disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.  相似文献   

12.
Astrocytes are major supportive glia and immune modulators in the brain; they are highly secretory in nature and interact with other cell types via their secreted proteomes. To understand how astrocytes communicate during neuroinflammation, we profiled the secretome of human astrocytes following stimulation with proinflammatory factors. A total of 149 proteins were significantly upregulated in stimulated astrocytes, and a bioinformatics analysis of the astrocyte secretome revealed that the brain renin–angiotensin system (RAS) is an important mechanism of astrocyte communication. We observed that the levels of soluble form of aminopeptidase N (sANPEP), an RAS component that converts angiotensin (Ang) III to Ang IV in a neuroinflammatory milieu, significantly increased in the astrocyte secretome. To elucidate the role of sANPEP and Ang IV in neuroinflammation, we first evaluated the expression of Ang IV receptors in human glial cells because Ang IV mediates biological effects through its receptors. The expression of angiotensin type 1 receptor was considerably upregulated in activated human microglial cells but not in human astrocytes. Moreover, interleukin-1β release from human microglial cells was synergistically increased by cotreatment with sANPEP and its substrate, Ang III, suggesting the proinflammatory action of Ang IV generated by sANPEP. In a mouse neuroinflammation model, brain microglial activation and proinflammatory cytokine expression levels were increased by intracerebroventricular injection of sANPEP and attenuated by an enzymatic inhibitor and neutralizing antibody against sANPEP. Collectively, our results indicate that astrocytic sANPEP–induced increase in Ang IV exacerbates neuroinflammation by interacting with microglial proinflammatory receptor angiotensin type 1 receptor, highlighting an important role of indirect crosstalk between astrocytes and microglia through the brain RAS in neuroinflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号