首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such “ectopic” expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified. Here, we summarize our current understanding of these ectopic taste receptors across multiple organs. With a particular focus on the specialized epithelial cells called tuft cells, which are now considered siblings of type II TRCs, we divide the ectopic expression of taste receptors into two categories: taste receptors in TRC-like cells outside taste buds and taste receptors with surprising ectopic expression in completely different cell types.  相似文献   

2.
Mammals recognize chemicals in the air via G protein-coupled odorant receptors (ORs). In addition to their orthosteric binding site, other segments of these receptors modulate ligand recognition. Focusing on human hOR1A1, which is considered prototypical of class II ORs, we used a combination of molecular modeling, site-directed mutagenesis, and in vitro functional assays. We showed that the third extracellular loop of ORs (ECL3) contributes to ligand recognition and receptor activation. Indeed, site-directed mutations in ECL3 showed differential effects on the potency and efficacy of both carvones, citronellol, and 2-nonanone.  相似文献   

3.
Delta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell–cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors. To confirm the role of particular receptors, knockdown experiments were performed. mRNA and protein expressions of Jagged1 (JAG1), Delta-like1 (DLL1), and Delta-like4 (DLL4) were analyzed using RT-qPCR, Western blot, and immunofluorescence. Testosterone caused downregulation of JAG1 and DLL1 expression, acting through membrane androgen receptor ZRT- and Irt-like protein 9 (ZIP9) or nuclear androgen receptor (AR), respectively. DLL4 was stimulated by testosterone in the manner independent of AR and ZIP9 in Sertoli cells. The expression of all studied DSL proteins was upregulated by 17β-estradiol. Estrogen action on JAG1 and DLL1 was mediated chiefly via estrogen receptor α (ERα), while DLL4 was controlled via estrogen receptor β (ERβ) and membrane G-protein-coupled estrogen receptor (GPER). To summarize, the co-operation of nuclear and membrane receptors for sex steroids controls DSL proteins in Sertoli cells, contributing to balanced Notch signaling activity in seminiferous epithelium.  相似文献   

4.
The ability of cells to promote plasminogen activation on their surfaces is now well recognized, and several distinct cell surface proteins have been demonstrated to function as plasminogen receptors. Here, we review studies demonstrating that plasminogen bound to cells, in addition to plasminogen directly bound to fibrin, plays a major role in regulating fibrin surveillance. We focus on the ability of specific plasminogen receptors on eukaryotic cells to promote fibrinolysis in the in vivo setting by reviewing data obtained predominantly in murine models. Roles for distinct plasminogen receptors in fibrin surveillance in intravascular fibrinolysis, immune cell recruitment in the inflammatory response, wound healing, and lactational development are discussed.  相似文献   

5.
A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.  相似文献   

6.
Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.  相似文献   

7.
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.  相似文献   

8.
Celiac disease (CD) is an immune-mediated disorder triggered by dietary gluten intake in some genetically predisposed individuals; however, the additional non-HLA-related genetic factors implicated in CD immunopathogenesis are not well-defined. The role of the innate immune system in autoimmunity has emerged in the last few years. Genetic polymorphisms of some pattern-recognition receptors, including toll-like receptors (TLRs), have been associated with several autoimmune disorders. In this review, we summarize and discuss the evidence from basic research and clinical studies as regards the potential role of TLRs in CD immunopathogenesis. The evidence supporting the role of TLRs in CD immunopathogenesis is limited, especially in terms of basic research. However, differences in the expression and activation of TLRs between active CD patients from one side, and controls and treated CD patients from the other side, have been described in some clinical studies. Therefore, TLRs may be part of those non-HLA-related genetic factors implicated in CD etiopathogenesis, considering their potential role in the interaction between the host immune system and some environmental factors (including viral infections and gut microbiota), which are included in the list of candidate agents potentially contributing to the determination of CD risk in genetically predisposed individuals exposed to dietary gluten intake. Further basic research and clinical studies focused on TLRs in the context of CD and other gluten-related disorders are needed.  相似文献   

9.
The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.  相似文献   

10.
Binding of peptide hormones to G protein-coupled receptors is believed to be mediated through formation of contacts of the ligands with residues of the extracellular loops of family 1 GPCRs. Here we have investigated whether additional binding sites exist within the N-terminal domain, as studied in the form of binding of peptides from the neuropeptide Y (NPY) family to the N terminus of the Y4 receptor (N-Y4). The N-terminal domain of the Y4 receptor has been expressed in isotopically enriched form and studied by solution NMR spectroscopy. The peptide is unstructured in solution, whereas a micelle-associated helical segment is formed in the presence of dodecylphosphocholine (DPC) or sodium dodecylsulfate (SDS). As measured by surface plasmon resonance (SPR) spectroscopy, N-Y4 binds with approximately 50 microM affinity to the pancreatic polypeptide (PP), a high-affinity ligand to the Y4 receptor, whereas binding to neuropeptide Y (NPY) and peptide YY (PYY) is much weaker. Residues critical for binding in PP and in N-Y4 have been identified by site-directed mutagenesis. The data indicate that electrostatic interactions dominate and that this interaction is mediated by acidic ligand and basic receptor residues. Residues of N-Y4 are likely to contribute to the binding of PP, and in addition might possibly also help to transfer the hormone from the membrane-bound state into the receptor binding pocket.  相似文献   

11.
Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.  相似文献   

12.
Itching can decrease quality of life and exacerbate skin symptoms due to scratching. Itching not only contributes to disease progression but also triggers complications such as skin infections and eye symptoms. Therefore, controlling itching is very important in therapeutic management. In addition to the well-known histamine, IL-31, IL-4 and IL-13 have recently been reported as factors that induce itching. Itching may also be caused by factors other than these histamines. However, we do not know the extent to which these factors are involved in each disease. In addition, the degree of involvement is likely to vary among individuals. To date, antihistamines have been widely used to treat itching and are often effective, suggesting that histamine is more or less involved in itchy diseases. This review discusses the ligand-receptor perspective and describes the dynamics of G protein-coupled receptors, their role as biased agonists, their role as inverse agonists, proactive antihistamine therapy, and drug selection with consideration of impaired performance and anti-PAF effects.  相似文献   

13.
RAR and RXR agonists : A collection of pyrazine‐based RAR/RXR ligands were prepared by a series of palladium catalyzed cross‐coupling reactions and characterized. Structure–activity relationships were elucidated. Retinoic acid receptor (RAR) α/β‐subtype‐selective and retinoid X receptor (RXR) inverse agonist activities are described for pyrazine acrylic acid arotinoid, 14 d .

  相似文献   


14.
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.  相似文献   

15.
Abnormal activation of Toll-like receptor (TLRs) signaling can result in colon cancer development. The aim of this study was to investigate the expression of important TLRs in different histological types of colorectal polyps and evaluate their relationship with intestinal microbiota. The expression levels of TLR2, 3, 4, and 5 were analyzed in intestinal biopsy specimens of 21 hyperplastic polyp (HP), 16 sessile serrated adenoma (SSA), 29 tubular adenoma (TA), 21 villous/tubulovillous (VP/TVP) cases, and 31 normal controls. In addition, selected gut bacteria including Streptococcus bovis, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Fusobacterium nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp., and Bifidobacterium spp. were quantified in fecal samples using absolute qRT PCR, and, finally, the association between TLRs and these gut microbiota- was evaluated by Spearman’s correlation coefficient. Higher expression of TLR2 and TLR4 in VP/TVP and TA, and lower expression levels of TLR3 and TLR5 in all type of polyps were observed. The differences in TLR expression patterns was not only dependent on the histology, location, size, and dysplasia grade of polyps but also related to the intestinal microbiota patterns. TLR2 and TLR4 expression was directly associated with the F. nucleatum, E. faecalis, S. bovis, Porphyromonas, and inversely to Bifidobacterium, Lactobacillus, and Roseburia quantity. Furthermore, TLR3 and TLR5 expression was directly associated with Bifidobacterium, Roseburia, and Lactobacillus quantity. Our results suggest a possible critical role of TLRs during colorectal polyp progression. An abnormal regulation of TLRs in relation to gut microbial quantity may contribute to carcinogenesis.  相似文献   

16.
17.
In order to theoretically design multi-state photoswitches with specific properties, an exhaustive computational study is first carried out for an azobenzene dimer that has been recently synthesized and experimentally studied. This study allows for a full comprehension of the factors that govern the photoactivated isomerization processes of these molecules so to provide a conceptual/computational protocol that can be applied to generic multi-state photoswitches. From this knowledge a new dimer with a similar chemical design is designed and also fully characterized. Our theoretical calculations predict that the new dimer proposed is one step further in the quest for a double photoswitch, where the four metastable isomers could be selectively interconverted through the use of different irradiation sequences.  相似文献   

18.
Sense of smell is mediated by diverse families of olfactory sensing receptors, conveying important dietary information, fundamental for growth and survival. The aim of this study was to elucidate the role of the sensory olfactory pathways in the regulation of feeding behavior of carnivorous rainbow trout (RT, Oncorhynchus mykiss), from first feeding until 8 months. Compared to a commercial diet, RT fed with a total plant-based diet showed drastically altered growth performance associated with feed intake from an early stage. Exhaustive examination of an RT genome database identified three vomeronasal type 1 receptor-like (ORA), 10 vomeronasal type 2 receptor-like (OLFC) and 14 main olfactory receptor (MOR) genes, all highly expressed in sensory organs, indicating their potential functionality. Gene expression after feeding demonstrated the importance in olfactory sensing perception of some OLFC (olfcg6) and MOR (mor103, -107, -112, -113, -133) receptor family genes in RT. The gene ora1a showed evidence of involvement in olfactory sensing perception for fish fed with a commercial-like diet, while ora5b, mor118, mor124 and olfch1 showed evidence of involvement in fish fed with a plant-based diet. Results indicated an impact of a plant-based diet on the regulation of olfactory sensing pathways as well as influence on monoaminergic neurotransmission in brain areas related to olfactory-driven behaviors. The overall findings suggest that feeding behavior is mediated through olfactory sensing detection and olfactory-driven behavior pathways in RT.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号