首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addresses the problem of stabilizing a class of nonlinear systems by using an H/sub /spl infin// fuzzy output feedback controller. First, a class of nonlinear systems is approximated by a Takagi-Sugeno (TS) fuzzy model. Then, based on a well-known Lyapunov functional approach, we develop a technique for designing an H/sub /spl infin// fuzzy output feedback control law which guarantees the L/sub 2/ gain from an exogenous input to a regulated output is less or equal to a prescribed value. A design algorithm for constructing an H/sub /spl infin// fuzzy output feedback controller is given. In contrast to the existing results, the premise variables of the H/sub /spl infin// fuzzy output feedback controller are not necessarily to be the same as the premise variables of the TS fuzzy model of the plant. A numerical simulation example is presented to illustrate the theory development.  相似文献   

2.
In this note, the problem of state feedback H/sub /spl infin// control for a class of nonlinear systems is considered. The class under study is a generalization of the well-known Lur'e systems. The H/sub /spl infin// problem is addressed via a class of storage functions of the Lur'e-Postnikov type whose integral term is parameterized by a nonlinear scalar function. The related H/sub /spl infin// controllers consist of a linear term, which is designed for the underlying linearized system, plus a nonlinear term which depends on the nonlinear function. A simple geometrical criterion is provided for the characterization of the set of controllers which ensure a given level of L/sub 2/-performance globally. Some guidelines for an effective design of the controller within this set are discussed via two examples.  相似文献   

3.
This work investigates the problem of robust output feedback H/sub /spl infin// control for a class of uncertain discrete-time fuzzy systems with time delays. The state-space Takagi-Sugeno fuzzy model with time delays and norm-bounded parameter uncertainties is adopted. The purpose is the design of a full-order fuzzy dynamic output feedback controller which ensures the robust asymptotic stability of the closed-loop system and guarantees an H/sub /spl infin// norm bound constraint on disturbance attenuation for all admissible uncertainties. In terms of linear matrix inequalities (LMIs), a sufficient condition for the solvability of this problem is presented. Explicit expressions of a desired output feedback controller are proposed when the given LMIs are feasible. The effectiveness and the applicability of the proposed design approach are demonstrated by applying this to the problem of robust H/sub /spl infin// control for a class of uncertain nonlinear discrete delay systems.  相似文献   

4.
This paper examines the problem of robust H/sub /spl infin// static output feedback control of a Takagi-Sugeno fuzzy system. The proposed robust H/sub /spl infin// static output feedback controller guarantees the L/sub 2/ gain of the mapping from the exogenous disturbances to the regulated output to be less than or equal to a prescribed level. The existence of a robust H/sub /spl infin// static output feedback control is given in terms of the solvability of bilinear matrix inequalities. An iterative algorithm based on the linear matrix inequality is developed to compute robust H/sub /spl infin// static output feedback gains. To reduce the conservatism of the design, the structural information of membership function characteristics is incorporated. A numerical example is used to illustrate the validity of the design methodologies.  相似文献   

5.
In this paper, we investigate the problem of robust H/sub /spl infin// performance and stabilization for a class of uncertain fuzzy systems with Frobenius norm-bounded parameter uncertainties in all system matrices. Both continuous- and discrete-time uncertain fuzzy systems are considered under a unified treatment called bounded real lemma for fuzzy systems. Unlike the bounded real lemma in the linear theory of robust H/sub /spl infin// control where necessary and sufficient conditions were obtained, only sufficient condition based on Lyapunov method is shown. Furthermore, connection between robust H/sub /spl infin// problems involving uncertainty and standard uncertainty-free H/sub /spl infin// problems is established via matrix algebra. As for controller synthesis, a state feedback fuzzy control law is designed via relaxed linear matrix inequality (LMI) formulations.  相似文献   

6.
In this paper, the problems of quadratic stability conditions and H/sub /spl infin// control designs for Takagi-Sugeno (T-S) fuzzy systems have been studied. First, a new quadratic stability condition, which is more simple than that in a previous paper, has been proposed. Second, two new sufficient conditions in the terms of linear matrix inequalities (LMIs) which guarantee the existence of the state feedback H/sub /spl infin// control for the T-S fuzzy systems have been proposed. The conditions are not only simple but also consider the interactions among the fuzzy subsystems. Finally, based on the LMIs, the H/sub /spl infin// controller designing methods for the T-S fuzzy systems have been given.  相似文献   

7.
This paper examines the problem of designing an H/sub /spl infin// output feedback controller with pole placement constraints for singular perturbed Takagi-Sugeno (TS) fuzzy models. We propose a fuzzy H/sub /spl infin// output feedback controller that not only guarantees the /spl Lscr//sub 2/-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, but also ensures closed-loop poles of each subsystem are in a prespecified linear matrix inequality (LMI) region. In order to alleviate the numerical stiffness caused by the singular perturbation /spl epsiv/, the design technique is formulated in terms of a family of /spl epsiv/-independent linear matrix inequalities. The proposed approach can be applied both standard and nonstandard singularly perturbed nonlinear systems. A numerical example is provided to illustrate the design developed in this paper.  相似文献   

8.
This paper discusses the stochastic H/sub 2//H/sub /spl infin// control problem with state-dependent noise. By means of the stabilization, exact observability and stochastic detectability of stochastic systems, the infinite horizon stochastic H/sub 2//H/sub /spl infin// control design is developed. For the finite horizon H/sub 2//H/sub /spl infin// control problem, our results generalize the corresponding deterministic ones to the stochastic models. Finally, the observer-based suboptimal stochastic H/sub 2//H/sub /spl infin// control is discussed in which the state variables cannot be measured directly, and a feasible design algorithm is proposed.  相似文献   

9.
Generally, it is difficult to design equalizers for signal reconstruction of nonlinear communication channels with uncertain noises. In this paper, we propose the H/sub /spl infin// and mixed H/sub 2//H/sub /spl infin// filters for equalization/detection of nonlinear channels using fuzzy interpolation and linear matrix inequality (LMI) techniques. First, the signal transmission system is described as a state-space model and the input signal is embedded in the state vector such that the signal reconstruction (estimation) design becomes a nonlinear state estimation problem. Then, the Takagi-Sugeno fuzzy linear model is applied to interpolate the nonlinear channel at different operation points through membership functions. Since the statistics of noises are unknown, the fuzzy H/sub /spl infin// equalizer is proposed to treat the state estimation problem from the worst case (robust) point of view. When the statistics of noises are uncertain but with some nominal (or average) information available, the mixed H/sub 2//H/sub /spl infin// equalizer is employed to take the advantage of both H/sub 2/ optimal performance with nominal statistics of noises and the H/sub /spl infin// robustness performance against the statistical uncertainty of noises. Using the LMI approach, the fuzzy H/sub 2//H/sub /spl infin// equalizer/detector design problem is characterized as an eigenvalue problem (EVP). The EVP can be solved efficiently with convex optimization techniques.  相似文献   

10.
This paper proposes a class of the constantly scaled H/sub /spl infin// control problem, where the class is characterized by an assumption also proposed in this paper. In general, the scaled H/sub /spl infin// control problem leads to nonconvex solvability conditions. On the other hand, for the problems in the proposed class, we show that a convex but sufficient solvability condition can be given. Moreover, the convexity of the state feedback and the full information problems can be regarded as the extreme cases of the sufficient condition. This fact motivates us to call the assumption the pseudofull information condition.  相似文献   

11.
In this note, H/sub /spl infin//-optimal preview control problem is discussed. The problem is reduced to finite-dimensional H/sub /spl infin// problem, whose solution algorithm is well known. Also, the performance limit by the optimal controller is clearly explained.  相似文献   

12.
In this paper, the standard (four-block) H/sup /spl infin// control problem for systems with a single delay in the feedback loop is studied. A simple procedure of the reduction of the problem to an equivalent one-block problem having particularly simple structure is proposed. The one-block problem is then solved by the J-spectral factorization approach, resulting in the so-called dead-time compensator (DTC) form of the controller. The advantages of the proposed procedure are its simplicity, intuitively clear derivation of the DTC form of the H/sup /spl infin// controller, and extensibility to the multiple delay case.  相似文献   

13.
A novel fuzzy neural network (FNN) quadratic stabilization output feedback control scheme is proposed for the trajectory tracking problems of biped robots with an FNN nonlinear observer. First, a robust quadratic stabilization FNN nonlinear observer is presented to estimate the joint velocities of a biped robot, in which an H/sub /spl infin// approach and variable structure control (VSC) are embedded to attenuate the effect of external disturbances and parametric uncertainties. After the construction of the FNN nonlinear observer, a quadratic stabilization FNN controller is developed with a robust hybrid control scheme. As the employment of a quadratic stability approach, not only does it afford the possibility of trading off the design between FNN, H/sub /spl infin// optimal control, and VSC, but conservative estimation of the FNN reconstruction error bound is also avoided by considering the system matrix uncertainty separately. It is shown that all signals in the closed-loop control system are bounded.  相似文献   

14.
In this note, sufficient conditions for H/sub /spl infin// output feedback stabilization of linear discrete-time systems are proposed via linear matrix inequalities (LMIs). In order to reduce conservatism existing in earlier LMI methods, auxiliary slack variables with structure are employed. It is shown that degree of freedoms by the introduction of auxiliary slack variables lead to more flexibility in obtaining an approximate solution of H/sub /spl infin// output feedback stabilization problems. Consequently, the proposed method can yield a less conservative result than earlier LMI methods. In particular, typical output feedback control problems, such as decentralized H/sub /spl infin// output feedback control and simultaneous H/sub /spl infin// output feedback control, can be more efficiently solved. Numerical examples are included to illustrate the advantages of the proposed LMI method.  相似文献   

15.
16.
This note presents new results pertaining to the delay-dependent stability and control design of a class of linear time-delay systems. A new state transformation is introduced to exhibit the delay-dependent dynamics. For stability, we construct an appropriate Lyapunov functional to derive delay-dependent linear matrix inequality-based sufficient condition. For the feedback control design, we establish schemes based on quadratic H/sub 2/ performance, H/sub /spl infin//, criteria and simultaneous H/sub 2//H/sub /spl infin// synthesis. Under the developed transformation, both the instantaneous and delayed feedback control yield identical results. Numerical examples are presented to illustrate the analytical development.  相似文献   

17.
This paper studies the problem of H/sub /spl infin// output tracking control for nonlinear time-delay systems using Takagi-Sugeno (T-S) fuzzy model approach. An LMI-based design method is proposed for achieving the output tracking purpose. Illustrative examples are given to show the effectiveness of the present results.  相似文献   

18.
A novel adaptive fuzzy controller with H/sub /spl infin// performance is proposed for a wide class of strict-feedback canonical nonlinear systems. The systems may possess a class of uncertainties referred to as unstructured uncertain functions, which are not linearly parameterized and have no prior knowledge of the bound. The Takagi-Sugeno-type fuzzy logic systems are used to approximate the uncertainties and a systematic design procedure is developed for synthesis of adaptive fuzzy control with H/sub /spl infin// performance, which combines the backstepping technique and generalized small gain approach. The method preserves the three advantages, those are, the semiglobal uniform ultimate bound of adaptive control in the presence of unstructured uncertainties can be guaranteed, the adaptive mechanism with only one learning parameter is obtained and the possible controller singularity problem in some of the existing adaptive control schemes with feedback linearization techniques can be removed. Performance and limitations of proposed method are discussed and illustrated with simulation results.  相似文献   

19.
In this paper, we study the effect of a network in the feedback loop of a control system. We use a stochastic packet-loss model for the network and note that results for discrete-time linear systems with Markovian jumping parameters can be applied. We measure performance using an H/sub /spl infin// norm and compute this norm via a necessary and sufficient matrix inequality condition. We also derive necessary and sufficient linear matrix inequality (LMI) conditions for the synthesis of the H/sub /spl infin// optimal controller for a discrete-time jump system. Finally, we apply these results to study the effect of communication losses on vehicle control.  相似文献   

20.
In this note the H/sub /spl infin// control problem with measurement feedback is investigated. It is well-known that for this problem, in general, we need controllers of the same dynamic order as the given system. However, in the case that some entries of the measurement vector are not noise-corrupted, we show that one can find dynamic compensators of a lower dynamical order. Note that this implies that the standard assumptions on the direct feedthrough matrices, as made in most papers on H/sub /spl infin// control, are not satisfied. Our result can be derived by using reduced order observer based controllers.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号