首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloisite 30B nano clay was delaminated in the presence of aniline monomers using supercritical CO2 (ScCO2) process. Rapid mixing polymerization of aniline monomers was done in supercritical CO2 to produce exfoliated polyaniline clay (PAniC) nanocomposites with high barrier properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and XRD analysis have been used to characterize morphology and structure of the synthesized products. The synthesized products were added to a commercial zinc rich epoxy primer to improve its initial barrier properties. Barrier properties of unmodified and modified primers were then studied by determining water vapour transmission (WVT) rate of their free films, free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) measurements of carbon steel coated panels. Results showed that samples modified with PAniC nanocomposites had better barrier properties compared to PAni modified and original primers. The coating resistance of PAniC modified primer was at least one order of magnitude higher than other primers at the begining of immersion. After one year of immersion, the coating resistance of original, PAni modified and PAniC modified primers were found to be 267, 1610 and 5540 ohm, respectively.  相似文献   

2.
Exfoliated polyaniline–graphite (PAniG) nanocomposite (NC) with high electrical conductivity was synthesized via in situ polymerization of aniline in the presence of intercalated graphite in ScCO2 medium. Ammonium peroxydisulfate (NH4)2S2O8 (APS) was used as an oxidizing agent. The morphology and structure of synthesized PAniG NC was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Synthesized PAniG NC was used to modify the barrier properties and cathodic protection behavior of a commercial zinc rich epoxy primer (c-ZRP) on low carbon steel (CS) substrate. The protective properties of original and modified ZRPs (m-ZRP) were investigated using open circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS) method. It was found that after immersing coated CS for 365 days in 3.5% sodium chloride solution the OCP for m-ZRP remained at the cathodic protection region (lower than −0.86 V/SCE), while for c-ZRP it was passed out of protection region after immersing 100 days. EIS analysis revealed that in m-ZRP the zinc consumption and formation of zinc oxide was delayed and after 100 days of immersion, resistance of c-ZRP and m-ZRP reaches to 2.48 × 104 Ω and 2.56 × 103 Ω, respectively. Results revealed that the performance of m-ZRP improved due to the barrier properties of PAniG NC which added to the primer.  相似文献   

3.
The corrosion of AA-2024 aluminum alloy protected with a chromate free primer is investigated after immersion in a 0.5 M NaCl aqueous solution. The water uptake by the coating increases continuously when the film, applied on an aluminum AA-2024 substrate, is placed in the 0.5 M NaCl solution. This increase is attributed to corrosion reactions taking place at the alloy/coating interface when water molecules reach the interface. The maximum water volume fraction absorbed by a similar coating applied on platinum substrate is 3.5 vol% and the permeability is 7.6 × 10−12 m2 s−1. After 72 h immersion in the 0.5 M NaCl solution, the Nyquist representation of impedance data shows transmission line behavior that can be assigned to percolation pathway along the filler particles after water uptake. Charge transfer and diffusion of corrosion reactants and products occur, but no delamination was observed for immersion longer than 172 h. Furthermore, the coating resistance is still close to 108 Ω cm−2 after this immersion time. This accounts for the good protective performance of the coating.  相似文献   

4.
Polarization losses of proton exchange membrane (PEM) fuel cells at 120 °C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion® 112 membrane and electrodes that have 35 wt.% Nafion® and 0.3 mg/cm2 platinum supported on carbon, membrane resistance at 20%RH was 0.407 Ω cm2 and electrode resistance 0.203 Ω cm2, significantly higher than 0.092 and 0.041 Ω cm2 at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm2. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis.  相似文献   

5.
Y.F. Shih  L.S. Chen 《Polymer》2008,49(21):4602-4611
In this study, poly(butylene succinate)/multi-walled carbon nanotube (PBS/MWNT) hybrids were prepared by a melt-blending process. The carbon nanotubes (CNTs) were successfully modified using N,N′-dicyclohexylcarbodiimide (DCC) dehydrating agents. As a result, excellent dispersion of the modified carbon nanotubes (CNT-C18) in organic solvents was achieved. Subsequently, the PBS/CNT nanocomposites were prepared through facile melt blending. Mechanical properties, thermal behavior, conductivity of these resultant polymer/CNT composites were investigated. The results obtained show that the PBS/CNT-C18 nanocomposites consisting of well-dispersed nanotubes exhibited enhanced thermal and mechanical properties. With the addition of 3 wt% CNT-C18, Td of the nanocomposite increased 12.3 °C as compared to that of the pristine PBS sample. Moreover, the increments of E′ and E″ of the nanocomposite at 25 °C were 120 and 55%, respectively. In the aspect of conductivity, the surface resistivity of the PBS/CNT-C18 composite was found to be 7.30 × 106 Ω, which is a decrease of 109 fold in value as compared to that of the pristine PBS sample. Such PBS/CNT-C18 sample exhibits high anti-static efficiency, which would be potentially useful in electronic packaging materials.  相似文献   

6.
Organic coating strategies for corrosion protection with inherently conducting polymers have become important because of restriction on the use of heavy metals and chromates in coatings due to their environmental problems. This work presents the synthesis of polyaniline-TiO2 composites (PTC) and the corrosion protection behaviour of PTC containing coating on steel. PTC was prepared by chemical oxidation of aniline and TiO2 by ammonium persulfate in phosphoric acid medium. The PTC was characterized by FTIR, XRD and SEM techniques. Suitable coating with PTC was formed on steel using acrylic resin. Using electrochemical impedance spectroscopy, the PTC containing coating's behaviour in 3% NaCl immersion test and salt spray test has been found out. Results indicate that the coating containing PTC is able to maintain the potential of steel in passive region due to its redox property. The resistance of the coating containing PTC was more than 107 Ω cm2 in 3% NaCl solution after 60 days and 109 Ω cm2 in the salt spray test of 35 days. But the resistance of the TiO2 containing coating was found to be less than 104 Ω cm2 in both the cases. The high performance of PTC containing coating is attributed to the passivation of steel by polyaniline.  相似文献   

7.
A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin (Γ) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of l-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 μM to 28.8 μM l-tyrosine with a detection limit of 0.01 μM and a high sensitivity of 0.31 μA μM−1 cm−2. In addition, the response time of the l-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = FeIV-P) which effectively catalyzed the oxidation of l-tyrosine. A mechanism was herein proposed for the catalytic oxidation of l-tyrosine by oxoiron (IV) porphyrin complexes.  相似文献   

8.
Y. Chen  J. Li  J.L. Lu  F.S. Wang 《Electrochimica acta》2007,52(17):5392-5399
Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 109 Ω cm2, whereas that for pure ER coating fell below 106 Ω cm2 after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 μm EB/ER coating protected steel-copper couple for at least 2000 h.  相似文献   

9.
Polypyrrole/PW12O403− hybrid material was electrosynthesised on carbon steel electrodes in acetonitrile medium. The coatings obtained were characterised by Electrochemical Impedance Spectroscopy (EIS). On free-standing polypyrrole films the electrical response was mainly due to ion–ion charge transfer resistance, with a value of 175 Ω cm2. A value of 2 × 10−5 S/cm was determined for the hybrid material conductivity. A charge transfer resistance about 7000 Ω cm2 was obtained due to steel/oxide interface. Corrosion tests showed an important improvement in the protection against corrosion when the carbon steel electrodes were coated by these polymeric films.  相似文献   

10.
Electrochemical Impedance Spectroscopy (EIS) has been used to characterise intact unpigmented epoxy coated mild steel with and without the application of cathodic protection (CP). Coated specimens were exposed to 0.6 M NaCL solution. Cathodic protection was applied at −0.78 V and −1.1 V (SCE). Coated specimens were also tested at Open Circuit Potential (OCP). The application of cathodic protection at −1.1 V was shown to affect the protective properties of the coating, causing the coating resistance to fall below the border line between fair and poor coating. The coating maintained a resistance in the order of 1 × 106 Ω cm2 when CP was applied at −0.78 V but a resistance of 1 × 105 Ω cm2 when CP was applied at −1.1 V. It was shown that water uptake by the coated specimens was considerably affected by the application of CP. The water uptake by the coated specimens was increased as a result of increasing the level of CP. The application of CP at −0.78 V, and −1.1 V was found to reduce the extent of corrosion on the coated specimens.  相似文献   

11.
A new type of metal separator coated with corrosion-resistant and electronically conductive carbon/resin composite layers has been developed. A flat, stainless steel plate was coated with a thin composite layer, and then ribs were formed of a similar composite over the thin layer as gas flow channels. The composite consisted of graphite, epoxy resin and a phenol hardener. By optimizing the combination and composition of materials, target values for the bulk electric conductivity and the chemical stability in hot water were cleared. The separator pieces exhibited a good corrosion resistance during soaking tests in 0.1 M H2SO4 at 90 °C over 2000 h or even at 120 °C over 1200 h. The area-specific resistance of the separator coated with the thin protecting layer and the rib layer was less than 13.8 mΩ cm2.  相似文献   

12.
Composite cathodes based on La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) are investigated for lower operating temperature (<750 °C) applications of a solid oxide fuel cell (SOFC). To enhance a charge transfer, a bi-layer SOFC cathode is proposed, which has a LSCF–Ce0.9Gd0.1O1.95 (GDC) composite layer and a pure LSCF layer. The bi-layer cathode SOFC shows a current density of 0.65 A cm−2 at 0.8 V and 660 °C, which is higher than a LSCF–GDC composite single-layer cathode SOFC cell of 0.35 A cm−2. The charge transfer polarizations in the bi-layer cathode SOFC are 0.14 Ω cm2 and 0.35 Ω cm2 at 760 °C and 660 °C, respectively, which are lower than those in the single-layer cathode cell of 0.23 Ω cm2 and 0.66 Ω cm2. The impedances characterized with a fitting model show that the lowered charge transfer polarization in the bi-layer cathode is a dominant factor in reducing the total polarization of SOFC.  相似文献   

13.
This paper focused on the transport studies of PVA-chitosan blended electrolyte system and application in proton batteries. The electrolytes were prepared by the solution cast technique. In this work, 36 wt.% PVA and 24 wt.% chitosan blend doped with 40 wt.% NH4NO3 exhibited the highest room temperature conductivity. The conductivity value obtained was 2.07 × 10−5 S cm−1. EC was then added in various quantities to the 60 wt.% [60 wt.% PVA-40 wt.% chitosan]-40 wt.% NH4NO3 composition in order to enhance the conductivity of the sample. The highest conductivity obtained was 1.60 × 10−3 S cm−1 for the sample containing 70 wt.% EC. The Rice and Roth model was applied to analyze the conductivity enhancement. The highest conducting sample in the plasticized system was used to fabricate several batteries with configuration Zn//MnO2. The open circuit potential (OCP) of the fabricated batteries was between 1.6 and 1.7 V.  相似文献   

14.
In this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X = ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 °C recorded a remarkably high value of 7 × 10−3 Ω−1 cm−1, higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At −20 °C, the ionic conductivity of (100 − x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 × 10−5-4.5 × 10−4 Ω−1 cm−1, approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y → 0 for LiClO4-SN to a maximum of 0.4 MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration.  相似文献   

15.
A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite [MnO2/P(An-co-oAs)] was successfully synthesized by a delamination/reassembling process using P(An-co-oAs) ionomer and layered manganese oxide in aqueous solution. This nanocomposite obtained was then characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), electron microscopy (SEM), and thermogravimetric (TG) analysis. X-ray diffraction and electron microscope analysis showed that the MnO2/P(An-co-oAs) nanocomposite had a lamellar structure with increasing interlayer spacing. The MnO2/P(An-co-oAs) nanocomposite exhibited substantially improved conductivity, which was near 100 times greater than that of its pristine MnO2 (3.5 × 10−7 S cm−1). The specific capacitance of the MnO2/P(An-co-oAs) nanocomposite reached 262 F g−1 in 1 M Na2SO4 at a current density of 1 A g−1, which was significantly higher than that of either of its two pristine materials [MnO2 (182 F g−1) or P(An-co-oAs) (127 F g−1)] owing to the synergic effect between the two pristine components. The fabrication mechanism of the nanocomposite was also proposed and discussed in this paper.  相似文献   

16.
2-(2-methyloxyethoxy)ethanol modified poly (cyclotriphosphazene-co-4,4′-sufonyldiphenol) (PZS) nanotubes were synthesized and solid composite polymer electrolytes based on the surface modified polyphosphazene nanotubes added to PEO/LiClO4 model system were prepared. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to investigate the characteristics of the composite polymer electrolytes (CPE). The ionic conductivity, lithium ion transference number and electrochemical stability window can be enhanced after the addition of surface modified PZS nanotubes. The electrochemical investigation shows that the solid composite polymer electrolytes incorporated with PZS nanotubes have higher ionic conductivity and lithium ion transference number than the filler SiO2. Maximum ionic conductivity values of 4.95 × 10−5 S cm−1 at ambient temperature and 1.64 × 10−3 S cm−1 at 80 °C with 10 wt % content of surface modified PZS nanotubes were obtained and the lithium ion transference number was 0.41. The good chemical properties of the solid state composite polymer electrolytes suggested that the inorganic-organic hybrid polyphosphazene nanotubes had a promising use as fillers in solid composite polymer electrolytes and the PEO10-LiClO4-PZS nanotubes solid composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.  相似文献   

17.
Vacuum-annealing imparts conductivity to initially insulating undoped polycrystalline chemical-vapor-deposited diamond, thus turning it to a possible electrode material. The diamond film annealed at 1775 K appeared to be practically not conducting. With further increase in the annealing temperature above 1825 K, the film effective resistivity decreased from initial value of 1011 to 1012 Ω cm down to less than 0.1 Ω cm; the differential capacitance increased from ∼10−3 to ∼50 μF per 1 cm2 of geometrical surface; the transfer coefficients for electrochemical reactions in the [Fe(CN)6]3−/4− redox solution increased from ∼0.2 to 0.5; and the degree of reversibility of the electrochemical reaction increased. The observed changes in the electrode properties are attributed to gradual change in the thickness and/or properties (first and foremost, conductivity) of the nondiamond carbon phase formed along the intercrystallite boundaries upon the annealing; the conducting phase is outcropping at the film surface as an array of microelectrodes (“active sites”).  相似文献   

18.
Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes were synthesized with the goal of increasing the proton conductivity and water retention at higher temperatures and lower relative humidities (120 °C, 40% RHs) as well as to improve the thermo-mechanical properties. The sol-gel approach was utilized to incorporate inorganic oxide nanoparticles within the pores of Nafion® membrane. The membranes synthesized by this approach were completely transparent and homogeneous as compared to membranes prepared by alternate casting methods which are cloudy due to the larger particle size. At 90 °C and 120 °C, all Nafion®-MO2 sol-gel composites exhibited higher water sorption than Nafion® membrane. However, at 90 °C and 120 °C, the conductivity was enhanced in only Nafion®-ZrO2 sol-gel composite with a 10% enhancement at 40% RH over Nafion®. This can be attributed to the increase in acidity of zirconia based sol-gel membranes shown by a decrease in equivalent weight in comparison to other nanocomposites based on Ti and Si. In addition, the TGA and DMA analyses showed improvement in degradation and glass transition temperature for nanocomposite membranes over Nafion®.  相似文献   

19.
MnS inclusions are good precursor sites for pitting corrosion of stainless steel. The objective of this paper was to quantify the passive properties of resulfurized stainless steel after immersion in chloride media. This was done by combining microcapillary techniques with electrochemical impedance spectroscopy and numerical analysis (specific equivalent circuit). It was shown that sulfur species produced in the electrolyte during the dissolution of inclusions react with the native passive film to CrS and FeSO4. Local electrochemical impedance spectroscopy measurements provided data describing the behaviour of the affected matrix at the microscale. For example, the value of the charge transfer and migration of point defects resistance decreases from 51,700 Ω cm2, in sites free of any metallurgical heterogeneity down to 12,200 Ω cm2, in sites containing a high density of inclusions. It was also shown that the integrity of the microcapillary can be altered by the presence of high quantity of sulfur in the electrolyte. Local impedance data allowed the detection of such problems.  相似文献   

20.
Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 °C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion® 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 × 105 Ss cm−3) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion® 117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号