首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Malfunction of mitochondrial complex I caused by nuclear gene mutations causes early-onset neurodegenerative diseases. Previous work using cultured fibroblasts of complex-I-deficient patients revealed elevated levels of reactive oxygen species (ROS) and reductions in both total Ca2+ content of the endoplasmic reticulum (ERCa) and bradykinin(Bk)-induced increases in cytosolic and mitochondrial free Ca2+ ([Ca2+]C; [Ca2+]M) and ATP ([ATP]C; [ATP]M) concentration. Here, we determined the mitochondrial membrane potential (Δψ) in patient skin fibroblasts and show significant correlations with cellular ROS levels and ERCa, i.e., the less negative Δψ, the higher these levels and the lower ERCa. Treatment with 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) normalized Δψ and Bk-induced increases in [Ca2+]M and [ATP]M. These effects were accompanied by an increase in ERCa and Bk-induced increase in [Ca2+]C. Together, these results provide evidence for an integral role of increased ROS levels in complex I deficiency and point to the potential therapeutic value of antioxidant treatment. Felix Distelmaier and Henk-Jan Visch contributed equally to this paper.  相似文献   

2.
Enzymatically dissociated mouse FDB muscle fibers, loaded with Fura-2 AM, were used to study the effect of mitochondrial uncoupling on the capacitative Ca2+ entry, SOCE. Sarcoplasmic reticulum (SR) Ca2+ stores were depleted by repetitive exposures to high K+ or 4-chloro-m-Cresol (4-CmC) in the absence of extracellular Ca2+. SR Ca2+ store replenishment was substantially reduced using 5 μM cyclopiazonic acid (CPA). Readmission of external Ca2+ (5 mM) increased basal [Ca2+]i under two modalities. In mode 1 [Ca2+]i initially increased at a rate of 0.8 ± 0.1 nM/s and later at a rate of 12.3 ± 2.6 nM/s, reaching a final value of 477.8 ± 36.8 nM in 215.7 ± 25.9 s. In mode 2, [Ca2+]i increased at a rate of 0.8 ± 0.1 nM/s to a value of 204.9 ± 20.6 nM in 185.4 ± 21.1 s. FCCP, 2 μM, reduced this Ca2+ entry. In nine FCCP-poisoned fibers, the initial rate of Ca2+ increase was 0.34 ± 0.1 nM/s (mean ± SEM), reaching a plateau of 149.2 ± 14.1 nM in 217 ± 19 s. The results may likely be explained by the hypothesis that SOCE is inhibited by mitochondrial uncouplers, pointing to a possible mitochondrial role in its activation. Using time-scan confocal microscopy and the dyes CaOr-5N AM or Rhod-2 AM to label mitochondrial Ca2+, we show that during depletion [Ca2+]mito initially increases and later diminishes. Finally, we show that the increase in basal [Ca2+]i, associated with SOCE activation, diminishes upon external Na+ withdrawal. Na+ entry through the SOCE pathway and activation of the reversal of Na+/Ca2+ exchanger could explain this SOCE modulation by Na+.  相似文献   

3.
Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca2+ concentration [Ca2+]i through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca2+]i oscillations, a feature suggested to involve nucleotide signalling. In this study, fluo-4 loaded Madin–Darby canine kidney (MDCK) cells are used as a model for quantification and characterisation of spontaneous [Ca2+]i increases in renal epithelia. Spontaneous [Ca2+]i increases occurred randomly as single cell events. During an observation period of 1 min, 10.9 ± 6.7% (n = 23) of the cells showed spontaneous [Ca2+]i increases. Spontaneous adenosine triphosphate (ATP) release from MDCK cells was detected directly by luciferin/luciferase. Scavenging of ATP by apyrase or hexokinase markedly reduced the [Ca2+]i oscillatory activity, whereas inhibition of ecto-ATPases (ARL67156) enhanced the [Ca2+]i oscillatory activity. The association between spontaneous [Ca2+]i increases and nucleotide signalling was further tested in 132–1N1 cells lacking P2 receptors. These cells hardly showed any spontaneous [Ca2+]i increases. Transfection with either hP2Y6 or hP2Y2 receptors revealed a striking degree of oscillations. Similar spontaneous [Ca2+]i increases were observed in freshly isolated, perfused mouse medullary thick ascending limb (mTAL). The oscillatory activity was reduced by basolateral apyrase and substantially lower in mTAL from P2Y2 knock out mice (0.050 ± 0.020 events per second, n = 8) compared to the wild type (0.147 ± 0.018 events per second, n = 9). These findings indicate that renal epithelia spontaneously release nucleotides leading to P2-receptor-dependent [Ca2+]i oscillations. Thus, tonic nucleotide release is likely to modify steady state renal function. C. S. Geyti and E. Odgaard contributed equally to the publication.  相似文献   

4.
To date, four isoforms of triadins have been identified in rat skeletal muscle. While the function of the 95-kDa isoform in excitation–contraction coupling has been studied in detail, the role of the 32-kDa isoform (Trisk 32) remains elusive. Here, Trisk 32 overexpression was carried out by stable transfection in L6.G8 myoblasts. Co-localization of Trisk 32 and IP3 receptors (IP3R) was demonstrated by immunocytochemistry, and their association was shown by co-immunoprecipitation. Functional effects of Trisk 32 on IP3-mediated Ca2+ release were assessed by measuring changes in [Ca2+]i following the stimulation by bradykinin or vasopressin. The amplitude of the Ca2+ transients evoked by 20 μM bradykinin was significantly higher in Trisk 32-overexpressing (p < 0.01; 426 ± 84 nM, n = 27) as compared to control cells (76 ± 12 nM, n = 23). The difference remained significant (p < 0.02; 217 ± 41 nM, n = 21, and 97 ± 29 nM, n = 31, respectively) in the absence of extracellular Ca2+. Similar observations were made when 0.1 μM vasopressin was used to initiate Ca2+ release. Possible involvement of the ryanodine receptors (RyR) in these processes was excluded, after functional and biochemical experiments. Furthermore, Trisk 32 overexpression had no effect on store-operated Ca2+ entry, despite a decrease in the expression of STIM1. These results suggest that neither the increased activity of RyR, nor the amplification of SOCE, is responsible for the differences observed in bradykinin- or vasopressin-evoked Ca2+ transients; rather, they were due to the enhanced activity of IP3R. Thus, Trisk 32 not only co-localizes with, but directly contributes to, the regulation of Ca2+ release via IP3R.  相似文献   

5.
 The exposure of frog skeletal muscle to caffeine (3–4 mM) generates an increase of the K+ (42K+) efflux rate coefficient (k K,o) which exhibits the following characteristics. First it is promoted by the rise in cytosolic Ca2+ ([Ca2+]i), because the effect is mimicked by ionomycin (1.25 μM), a Ca2+ ionophore. Second, the inhibition of caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) by 40 μM tetracaine significantly reduced the increase in k K,ok K,o). Third, charybdotoxin (23 nM), a blocker of the large-conductance Ca2+-dependent K+ channels (BKCa channels) reduced Δk K,o by 22%. Fourth, apamin (10 nM), a blocker of the small-conductance Ca2+-dependent K+ channels (SKCa channels), did not affect Δk K,o. Fifth, tolbutamide (800 μM), an inhibitor of KATP channels, reduced Δk K,o by about 23%. Sixth, Ba2+, a blocker of most K+ channels, did not preclude the caffeine-induced Δk K,o. Seventh, omitting Na+ from the external medium reduced Δk K,o by about 40%. Eight, amiloride (5 mM) decreased Δk K,o by 65%. It is concluded that the caffeine-induced rise of [Ca2+]i increases K+ efflux, through the activation of: (1) two channels (BKCa and KATP) and (2) an external Na+-dependent amiloride-sensitive process. Received: 13 March 1998 / Received after revision: 17 June 1998 / Accepted: 14 September 1998  相似文献   

6.
Using the mitochondrial potential (ΔΨm) marker JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide) and high-resolution imaging, we functionally analyzed mitochondria in cultured rat hippocampal astrocytes. Ratiometric detection of JC-1 fluorescence identified mitochondria with high and low ΔΨm. Mitochondrial density was highest in the perinuclear region, whereas ΔΨm tended to be higher in peripheral mitochondria. Spontaneous ΔΨm fluctuations, representing episodes of increased energization, appeared in individual mitochondria or synchronized in mitochondrial clusters. They continued upon withdrawal of extracellular Ca2+, but were antagonized by dantrolene or 2-aminoethoxydiphenylborate (2-APB). Fluo-3 imaging revealed local cytosolic Ca2+ transients with similar kinetics that also were depressed by dantrolene and 2-APB. Massive cellular Ca2+ load or metabolic impairment abolished ΔΨm fluctuations, occasionally evoking heterogeneous mitochondrial depolarizations. The detected diversity and ΔΨm heterogeneity of mitochondria confirms that even in less structurally polarized cells, such as astrocytes, specialized mitochondrial subpopulations coexist. We conclude that ΔΨm fluctuations are an indication of mitochondrial viability and are triggered by local Ca2+ release from the endoplasmic reticulum. This spatially confined organelle crosstalk contributes to the functional heterogeneity of mitochondria and may serve to adapt the metabolism of glial cells to the activity and metabolic demand of complex neuronal networks. The established ratiometric JC-1 imaging—especially combined with two-photon microscopy—enables quantitative functional analyses of individual mitochondria as well as the comparison of mitochondrial heterogeneity in different preparations and/or treatment conditions.  相似文献   

7.
It is well known that the rate of intracellular calcium ([Ca2+]i) decline is an important factor governing relaxation in unloaded myocardium. However, it remains unclear to what extent, under near physiological conditions, the intracellular calcium transient amplitude and kinetics contribute to the length-dependent increase in force and increase in duration of relaxation. We hypothesize that myofilament properties rather than calcium transient decline primarily determines the duration of relaxation in adult mammalian myocardium. To test this hypothesis, we simultaneously measured force of contraction and calibrated [Ca2+]i transients in isolated, thin rabbit trabeculae at various lengths at 37°C. Time from peak tension to 50% relaxation (RT50(tension)) increases significantly with length (from 49.8 ± 3.4 to 83.8 ± 7.4 ms at an [Ca2+]o of 2.5 mM), whereas time from peak calcium to 50% decline (RT50(calcium)) was not prolonged (from 124.8 ± 5.3 to 107.7 ± 11.4 ms at an [Ca2+]o of 2.5 mM). Analysis of variance revealed that RT50(tension) is significantly correlated with length (P < 0.0001). At optimal length, varying the extracellular calcium concentration increased both developed force and calcium transient amplitude, but RT50(tension) remained unchanged (P = 0.90), whereas intracellular calcium decline actually accelerated (P < 0.05). Thus, an increase in muscle length will result in an increase in both force and duration of relaxation, whereas the latter is not primarily governed by the rate of [Ca2+]i decline.  相似文献   

8.
We report the use of the fluorescent dye CalciumOrange-5N (CaOr-5N) as a specific mitochondria Ca2+ marker in enzymatically dissociated mouse FBD muscle fibers. Using laser scanning confocal microscopy and the dyes Mitotracker Green (MTG), di-8-ANEPPS and endoplasmic reticulum tracker green (ERTG), we determined the relative position of mitochondria, transverse tubules and sarcoplasmic reticulum in the sarcomere. Comparison with electron micrographies showed that mitochondria are mostly present at both sides of Z lines and near the triads located at the A-I band border. CaOr-5N fluorescence was mainly distributed in mitochondria, highly co-localised with MTG and basically excluded from the A band space. ERTG localised mostly between the two t-tubules present in each sarcomere. We studied the effect of the protonophore FCCP using CaOr-5N to measure mitochondrial Ca2+ and JC-1 dye to measure mitochondria inner membrane potential (ΔΨ m). After FCCP treatment, the CaOr-5N fluorescence diminished by about 33% in 80 s, while JC-1 fluorescence diminished by 36% in 200 s. Our results show the loss of Ca2+ from mitochondria when ΔΨm is depolarised and demonstrate the usefulness of CaOr-5N to mark mitochondrial [Ca2+]m. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Summary Dispersed brain cells from 12–14 day old mouse embryos were loaded with the Ca2+-sensitive fluorescent probe, quin2 and shown to have a resting intracellular Ca2+ concentration ([Ca2+]i) of 158 nM (SE ± 5) in the presence of 1 mM [Ca2+]o. When external [Ca2+] was raised from 0 to 1 mM there was an increase of [Ca2+]i of 70 nM; with further additions of Ca to >10 mM [Ca2+]o the level of [Ca2+]i increased by <25 nM. Releasable intracellular Ca2+ stores, estimated from the increase in [Ca2+] produced by 4Br A23187 in the absence of extracellular Ca2+, were 24 fmol/106 cells. A small increase in [Ca2+]i could be produced by the mitochondrial inhibitor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). When extracellular K+ was raised by 10–20 mM, intracellular Ca2+ levels increased from 152 (SE ± 7) to 204 nM (SE ± 10). These K+-induced increases in [Ca2+]i were blocked by verapamil, did not occur in the absence of extracellular Ca2+, and presumably reflect the activation of voltage-dependent Ca2+ channels. N-methyl-D-aspartic acid (NMDA) evoked an increase in [Ca2+]i, while the kainate-like lathyrus sativus neurotoxin, L-3-oxalyl-amino-2aminopropionic acid (L-3,2-OAP) did not; this is consistent with previous observations of different and respectively Ca2+-dependent and -independent mechanisms of action of these excitatory amino acids.  相似文献   

10.
Employing microfluorometric system and patch clamp technique in rabbit basilar arterial myocytes, regulation mechanisms of vascular excitability were investigated by applying intracellular pH (pHi) changers such as sodium acetate (SA) and NH4Cl. Applications of caffeine produced transient phasic contractions in a reversible manner. These caffeine-induced contractions were significantly enhanced by SA and suppressed by NH4Cl. Intracellular Ca2+ concentration ([Ca2+]i) was monitored in a single isolated myocyte and based the ratio of fluorescence using Fura-2 AM (R 340/380). SA (20 mM) increased and NH4Cl (20 mM) decreased R 340/380 by 0.2 ± 0.03 and 0.1 ± 0.02, respectively, in a reversible manner. Caffeine (10 mM) transiently increased R 340/380 by 0.9 ± 0.07, and the ratio increment was significantly enhanced by SA and suppressed by NH4Cl, implying that SA and NH4Cl may affect [Ca2+]i (p < 0.05). Accordingly, we studied the effects of SA and NH4Cl on Ca2+-activated K+ current (IKCa) under patch clamp technique. Caffeine produced transient outward current at holding potential (V h) of 0 mV, caffeine induced transient outward K+ current, and the spontaneous transient outward currents were significantly enhanced by SA and suppressed by NH4Cl. In addition, IKCa was significantly increased by acidotic condition when pHi was lowered by altering the NH4Cl gradient across the cell membrane. Finally, the effects of SA and NH4Cl on the membrane excitability and basal tension were studied: Under current clamp mode, resting membrane potential (RMP) was −28 ± 2.3 mV in a single cell level and was depolarized by 13 ± 2.4 mV with 2 mM tetraethylammonium (TEA). SA hyperpolarized and NH4Cl depolarized RMP by 10 ± 1.9 and 16 ± 4.7 mV, respectively. SA-induced hyperpolarization and relaxation of basal tension was significantly inhibited by TEA. These results suggest that SA and NH4Cl might regulate vascular tone by altering membrane excitability through modulation of [Ca2+]i and Ca2+-activated K channels in rabbit basilar artery.  相似文献   

11.
Single pieces of fura-2-loaded cortical collecting tubule (CCT) isolated either from normal or adrenalectomized (ADX) rats were superfused in vitro, and the cytosolic calcium concentration ([Ca2+]i) was calculated from fluorescence recordings. The effects of altering the sodium gradient across cell membranes were investigated. Switching external sodium from 164 mM to 27 mM (low [Na+]o) had little effect on [Ca2+]i in normal tubules (106±9 versus 101±9 nM, n=15) whereas it resulted in a large peak of [Ca2+]i in CCT from ADX-rats (270±32 versus 135±11 nM, n=21). Since CCT from ADX rats are known to have a reduced Na-pump activity, the effect of ouabain treatment on CCT from normal rats was also tested. When CCT from normal rats were exposed to 1 mM of ouabain in the presence of 164 mM of [Na+]o, [Ca2+]i increased only moderately (123±15 versus 111±11 nM, n=13); when the low [Na+]o solution was applied to these ouabain-treated tubules, a large and transient increase in [Ca2+]i was obtained (287±38 versus 123±15 nM, n=13). This response was absent with [Ca2+]o=0. The data suggest the presence of 3 Na+/1 Ca2+ exchangers in cell membranes of rat CCT. The calcium flux equation derived by Läuger for the exchanger indicates a non-linear relationship between net calcium flux and driving force which could account for the difference observed here between the poor effect of applying either low [Na+]o or ouabain alone and the large peak of [Ca2+]i induced by combining these two conditions.  相似文献   

12.
Sustained increase in [Ca2+]c (Δ[Ca2+]c) is a critical early signal from T-cell receptor (TCR/CD3). In general, Ca2+-release activated Ca2+ channels (CRAC) are responsible for the Ca2+ influx and Δ[Ca2+]c after TCR/CD3 stimulation. However, T cells also express Ca2+-permeable nonselective cation channels such as TRPM2 and TRPC. Gd3+ is a relatively selective blocker for CRAC at micromolar concentrations. Here, Jurkat T cells were used to investigate the Gd3+-resistant Ca2+ influx (Δ[Ca2+]c,Gd) induced by concanavalin A (ConA, 1 μg/ml), a widely used mitogenic agent for T cells, or by anti-CD3 Ab (αCD3). αCD3-induced Δ[Ca2+]c was partly (~60%) inhibited by 1 μM Gd3+ while thapsigargin-induced Δ[Ca2+] was almost completely abolished. ConA-induced Δ[Ca2+] was mostly inhibited by 1 μM Gd3+ during the early phase (<30 s of ConA application) and became resistant during the late phase (>2 min). Induction of Δ[Ca2+]c,Gd by αCD3 and ConA was inhibited by 2-aminoethoxydiphenyl borate (2-APB) and by N-(p-amylcinnamoyl) anthranilic acid, indicating that TRPM2 and TRPC are involved in this process. Treatment with Pyr-3, a TRPC3-specific inhibitor, potently suppressed Δ[Ca2+]c,Gd by αCD3 (IC50, 0.16 μM). Patch clamp experiments demonstrated that the TRPM2 channels were activated by ConA, and the TRPC-like channels were activated by αCD3. Our present study suggests that TRPM2 and TRPC3 are activated by ConA and TCR/CD3, respectively, in Jurkat T cells and are responsible for the induction of Δ[Ca2+]c,Gd.  相似文献   

13.
The molecular mechanism(s) involved in mediating Ca2+ entry into rat parotid acinar and other non-excitable cells is not known. In this study we have examined the kinetics of Ca2+ entry in fura-2-loaded parotid acinar cells, which were treated with thapsigargin to deplete internal Ca2+ pools (Ca2+-pool-depleted cells). The rate of Ca2+ entry was determined by measuring the initial increase in free cytosolic [Ca2+] ([Ca2+]i) in Ca2+-pool-depleted, and control (untreated), cells upon addition of various [Ca2+] to the medium. In untreated cells, a low-affinity component was detected with K Ca = 3.4 ± 0.7 mM (where K Ca denotes affinity for Ca2+) and V max = 9.8 ± 0.4 nM [Ca2+]i /s. In thapsigargin-treated cells, two Ca2+ influx components were detected with K Ca values of 152 ±  79 μM (V max = 5.1 ± 1.9 nM [Ca2+]i/s) and 2.4 ±  0.9 mM (V max = 37.6 ± 13.6 nM [Ca2+]i/s), respectively. We have also examined the effect of Ca2+ and depolarization on these two putative Ca2+ influx components. When cells were treated with thapsigargin in a Ca2+-free medium, Ca2+ influx was higher than into cells treated in a Ca2+-containing medium and, while there was a 46% increase in the V max of the low-affinity component (no change in K Ca), the high-affinity component was not clearly detected. In depolarized Ca2+-pool-depleted cells (with 50 mM KCl in the medium) the high-affinity component was considerably decreased while there was an apparent increase in the K Ca of the low-affinity component, without any change in the V max. These results demonstrate that Ca2+ influx into parotid acinar cells (1) is increased (four- to five-fold) upon internal Ca2+ pool depletion, and (2) is mediated via at least two components, with low and high affinities for Ca2+. Received: 30 October 1995/Received after revisionand accepted: 13 December 1995  相似文献   

14.
The effect of the total fraction of human defensins (HNP-1, HNP-2, and HNP-3) on the cytoplasmic Ca2+ content ([Ca2+]i) in the platelets of healthy donors was studied. At concentrations of 0.1–40 μg/ml and an incubation time of 10 min defensins have no effect on [Ca2+]i in platelets labeled with Fura-2AM. However, at higher concentrations (100 μg/ml) they increased platelet [Ca2+]i. In addition, defensins (40 μg/ml) inhibited the Ca2+ increase in platelets induced by thrombin, adenosine diphosphate, and the lipopolysaccharide ofS. typhimurium endotoxin. The most pronounced inhibitory effect was observed in a suspension of thrombin-stimulated platelets. It is shown that the effect of human defensins on the functional activity of platelets is due to the alterations in the intracellular Ca2+. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 12, pp. 600–603, December, 1994  相似文献   

15.
Ionomycin (IM) at 5 μM mediates the Ca2+/H+ exchange, while IM at 1 μM activates the store-operated Ca2+ entry channels (SOCs). In this study, the effects of depolarization on both pathways were examined in rat submandibular acinar cells by increasing extracellular K+ concentration ([K+]o). IM (5 μM, the Ca2+/H+ exchange) increased the intracellular Ca2+ concentration ([Ca2+]i) to an extremely high value at 151 mM [K+]o. However, with increasing [K+]o, the rates of Ca2+ entry decreased in a linear relationship. The reversal potential (E rev) for the Ca2+/H+ exchange was +93 mV, suggesting that IM (5 μM) exchanges 1 Ca2+ for 1 H+. Thus, depolarization decreases the Ca2+ influx via the Ca2+/H+ exchange because of its electrogenicity (1 Ca2+ for 1 H+). On the other hand, IM (1 μM, the SOCs) abolished an increase in [Ca2+]i at 151 mM [K+]o. With increasing [K+]o, the rate of Ca2+ entry immediately decreased linearly. The E rev for the SOC was +3.7 mV, suggesting that the SOCs are nonselective cation channels and less selective for Ca2+ over Na+ (P Ca/P Na = 8.2). Moreover, an increase in extracellular Ca2+ concentration (20 mM) enhanced the Ca2+ entry via the SOCs at 151 mM [K+]o, suggesting depolarization does not inhibit the SOCs and decreases the driving force for the Ca2+ entry. This suggests that membrane potential changes induced by a secretory stimulation finely regulate the [Ca2+]i via the SOCs in rat submandibular acinar cells. In conclusion, IM increases [Ca2+]i via two pathways depending on its concentration, the exchange of 1 Ca2+ for 1 H+ at 5 μM and the SOCs at 1 μM.  相似文献   

16.
Quantal release of adenosine triphosphate (ATP) was monitored in rat pancreatic β-cells expressing P2X2 receptors. Stimulation of exocytosis evoked rapidly activating and deactivating ATP-dependent transient inward currents (TICs). The unitary charge (q) of the events recorded at 0.2 μM [Ca2+]i averaged 4.3 pC. The distribution of the 3√q of these events could be described by a single Gaussian. The rise times averaged ∼5 ms over a wide range of TIC amplitudes. In β-cells preloaded with 5-hydroxytryptamine (5-HT; accumulating in insulin granules), ATP was coreleased with 5-HT during >90% of the release events. Following step elevation of [Ca2+]i to ∼5 μM by photo release of caged Ca2+, an increase in membrane capacitance was observed after 33 ms, whereas ATP release first became detectable after 43 ms. The step increase in [Ca2+]i produced an initial large TIC followed by a series of smaller events that echoed the changes in membrane capacitance (ΔC m). Mathematical modeling suggests that the large initial TIC reflects the superimposition of many unitary events. Exocytosis, measured as ΔC m or TICs, was complete within 2 s after elevation of [Ca2+]i with no sign of endocytosis masking the capacitance increase. The relationship between total charge (Q) and ΔC m was linear with a slope of ∼1.2 pC/fF. The latter value predicts a capacitance increase of 3.6 fF for the observed mean value of q, close to that expected for exocytosis of individual insulin granules. Our results indicate that measurements of ATP release and ΔC m principally (≥85–95%) report exocytosis of insulin granules.  相似文献   

17.
 To study the role of endothelial ATP-sensitive K+ channels in the regulation of vascular tone we examined the intracellular calcium concentration ([Ca2+]i) in coronary capillaries consisting only of endothelial cells. Coronary capillary fragments were isolated enzymatically from the guinea-pig heart and [Ca2+]i was determined by microfluorometry of fura-2 loaded cells. Low concentrations of the K+ channel opener diazoxide, which caused pronounced glibenclamide-sensitive hyperpolarization in capillaries, induced a rapid, transient rise in [Ca2+]i followed by a sustained elevation of [Ca2+]i (19 of 40 experiments). [Ca2+]i in the endothelial cells increased from 32 ± 7 nM at rest to 66 ± 11 nM at the peak (n = 19). One third of the [Ca2+]i-transients showed irregular oscillations of [Ca2+]i. No significant difference in the [Ca2+]i-response induced by 100 nM or 1 μM diazoxide was found. Similar results were obtained with the K+ channel opener rilmakalim. Simultaneous measurements of the membrane potential and [Ca2+]i with fluorometric methods indicated that the hyperpolarization but not the [Ca2+]i-transient could be repeatedly induced in a single capillary by the K+ channel openers. Electrophysiological recordings of the membrane potential using the ”perforated patch” method (n = 4), showed that rilmakalim (1 μM) induced hyperpolarization of capillaries towards the K+ equilibrium potential, confirming our fluorometric measurements. In conclusion, for the first time, these data indicate that K+ channel openers induce [Ca2+]i-transients in microvascular endothelial cells. This raises the possibility that these drugs not only act as synthetic vasoactive factors via hyperpolarizing smooth muscle cells but also via NO release of microvascular endothelial cells. Interestingly, only 100 nM diazoxide was sufficient for a maximal response, suggesting the expression of a new type of KATP-channel in coronary capillaries characterised by high sensitivity to diazoxide. Received: 22 August 1997 / Received after revision and accepted: 7 November 1997  相似文献   

18.
We have studied the effects of mitochondria poisoning by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) on Ca2+ signaling in enzymatically dissociated mouse flexor digitorum brevis (FDB) muscle fibers. We used Fura-2AM to measure resting [Ca2+]i and MagFluo-4AM to measure Ca2+ transients. Exposure to FCCP (2 μM, 2 min) caused a continuous increase in [Ca2+]i at a rate of 0.60 nM/s and a drastic reduction of electrically elicited Ca2+ transients without much effect on their decay phase. Half of the maximal effect occurred at [Ca2+]i = 220 nM. This effect was partially reversible after long recuperation and was not diminished by Tiron, a reactive oxygen species (ROS) scavenger. FCCP had no effects on fiber excitability as shown by the generation of action potentials. 4CmC, an agonist of ryanodine receptors, induced a massive Ca2+ release. FCCP diminished the rate but not the amount of Ca2+ released, indicating that depletion of Ca2+ stores did not cause the decrease in Ca2+ transient amplitude. Ca2+ transient amplitude could also be diminished, but to a lesser degree, by increases in [Ca2+]i induced by repetitive stimulation of fibers treated with ciclopiazonic acid. This suggests an important role for Ca2+ in the FCCP effect on transient amplitude.  相似文献   

19.
Intracellular Na+ concentration ([Na+]i) rises in the heart during ischemia, and on reperfusion, there is a transient rise followed by a return toward control. These changes in [Na+]i contribute to ischemic and reperfusion damage through their effects on Ca2+ overload. Part of the rise of [Na+]i during ischemia may be caused by increased activity of the cardiac Na+/H+ exchanger (NHE1), activated by the ischemic rise in [H+]i. In support of this view, NHE1 inhibitors reduce the [Na+]i rise during ischemia. Another possibility is that the rise of [Na+]i during ischemia is caused by Na+ influx through channels. We have reexamined these issues by use of two different NHE1 inhibitors, amiloride, and zoniporide, in addition to tetrodotoxin (TTX), which blocks voltage-sensitive Na+ channels. All three drugs produced cardioprotection after ischemia, but amiloride (100 μM) and TTX (300 nM) prevented the rise in [Na+]i during ischemia, whereas zoniporide (100 nM) did not. Both amiloride and zoniporide prevented the rise of [Na+]i on reperfusion, whereas TTX was without effect. In an attempt to explain these differences, we measured the ability of the three drugs to block Na+ currents. At the concentrations used, TTX reduced the transient Na+ current (I Na) by 11 ± 2% while amiloride and zoniporide were without effect. In contrast, TTX largely eliminated the persistent Na+ current (I Na,P) and amiloride was equally effective, whereas zoniporide had a substantially smaller effect reducing I Na,P to 41 ± 8%. These results suggest that part of the effect of NHE1 inhibitors on the [Na+]i during ischemia is by blockade of I Na,P. The fact that a low concentration of TTX eliminated the rise of [Na+]i during ischemia suggests that I Na,P is a major source of Na+ influx in this model of ischemia.  相似文献   

20.
In HT29 colonic epithelial cells agonists such as carbachol (CCH) or ATP increase cytosolic Ca2+ activity ([Ca2+]i) in a biphasic manner. The first phase is caused by inositol 1,4,5-trisphophate-(Ins P 3-) mediated Ca2+ release from their respective stores and the second plateau phase is mainly due to stimulated transmembraneous Ca2+ influx. The present study was undertaken to examine the effect of increased adenosine 3′,5′-cyclic monophasphate (cAMP) (forskolin 10 μmol/l = FOR) on the Ca2+ transient in the presence of CCH (100 μmol/l). In unpaired experiments it was found that FOR induced a depolarization and reduced cytosolic Ca2+ ([Ca2+]i, measured as the fura-2 fluorescence ratio 340/380 nm) significantly. Dideoxyforskolin had no such effect. The effect of FOR was abolished when the cells were depolarized by a high-K+ solution. In further paired experiments utilizing video imaging in conjunction with whole-cell patch-clamp, [Ca2+]i was monitored separately for the patch-clamped cell and three to seven neighbouring cells. In the presence of CCH, FOR reduced [Ca2+]i uniformly from a fluorescence ratio (345/380) of 2.9 ± 0.12 to 1.8 ± 0.07 in the patch-clamped cell and its neighbours (n = 48) and depolarized the membrane voltage (V m) of the patch-clamped cells significantly and reversibly from −54 ± 7.4 to −27 ± 5.9 mV (n = 6). In additional experiments V m was depolarized by 15–54 mV by various increments in the bath K+ concentration. This led to corresponding reductions in [Ca2+]i. Irrespective of the cause of depolarization (high K+ or FOR) there was a significant correlation between the change in V m and change in [Ca2+]i. These data indicate that the cAMP-mediated attenuation of Ca2+ influx is caused by the depolarization produced by this second messenger. Received: 12 March 1996/Accepted: 2 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号