首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally in Australia, regular applications of insecticide to the floors and lower walls of broiler houses after cleanout periods have been used in an attempt to control lesser mealworm, Alphitobius diaperinus (Panzer). The Australian chicken meat industry has been concerned in recent years with the failure to control A. diaperinus in its broiler houses by using this method and with large beetle populations breaching farm biosecurity. Resistance to fenitrothion was suspected to be responsible for these recent control failures. In response, beetles from 13 poultry facilities were compared with an insecticide-susceptible reference population by using a topical application method. Generally, strong resistance to fenitrothion (up to 79 times that of the susceptible at the LC50) occurred in populations of A. diaperinus in long-established broiler growing areas of southeastern Queensland, where fenitrothion had been used continuously for up to 20 yr. In newly established broiler growing areas, where considerably less fenitrothion had been used (i.e., approximately 5 yr), much weaker or no resistance occurred. In addition, dose-mortality data generated for the susceptible reference beetle population over a range of fenitrothion concentrations showed that 0.15% fenitrothion at a LC(99.9) level could be used as a convenient topical dose concentration to discriminate between susceptible and resistant individuals. Using this method, the susceptibility of 27 field populations of A. diaperinus was determined. Of this total, 23 populations did not exhibit complete mortality against the discriminating concentration (mortality range 0-98.7%). Application of fenitrothion in Australian broiler houses for control of A. diaperinus has now ceased.  相似文献   

2.
Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion-resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC9.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies.  相似文献   

3.
Lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), adults were collected from six eastern Texas broiler facilities and examined for susceptibility to four formulated insecticides. Data indicate that A. diaperinus adults exposed to filter papers treated with the label rates of the insecticides exhibit some level of recovery. Approximately 20% or less A. diaperinus adults treated with Tempo SC Ultra (8 ml/92.9 m2, 11.8% beta-cyfluthrin) or Talstar WP Insecticide/Miticide (23.3 ml/92.9 m2, 10% bifenthrin) and recorded as moribund at the 4-h observation period recovered by the 24-h observation period. A. diaperinus adults treated with Tempo SC Ultra and Talstar WP also had the greatest percentage of mortality for both observation periods. A. diaperinus adults treated with Dragnet SFR (49.7 ml/92.9 m2, 36.8% permethrin) had the greatest level of recovery at approximately 50-60% overall, which was similar to that recorded for the water-only control. Additionally, five of the six A. diaperinus populations treated with Dragnet SFR resulted in < 10% mortality for both observation periods. Unlike the other insecticides examined, Talstar Professional Insecticide (10 ml/92.9 m2, "Talstar Pro," 7.9% bifenthrin) resulted in approximately 50% more A. diaperinus mortality at the 24-h than the 4-h observation period due primarily to increased mortality recorded for Farm F. A. diaperinus adults from farm D had > or = 87% knockdown 4 h after treatment to all compounds examined, indicating a high degree of sensitivity to these compounds. However, approximately 90% of the A. diaperinus adults from this population treated with Dragnet SFR and recorded as moribund recovered by the 24-h observation. A. diaperinus adults from this population treated with the other insecticides exhibited limited recovery. Susceptible adult A. diaperinus populations are still present in Texas, based on the populations examined. But, identifying these populations is difficult and time-consuming. Consequently, screening populations before treatment might not be feasible. However, newer generation pyrethroids examined in this study seem to be suitable for suppressing A. diaperinus populations in broiler facilities.  相似文献   

4.
The susceptibility of six Australian broiler house populations and an insecticide susceptible population of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), to cyfluthrin, beta-cyfluthrin, gamma-cyhalothrin, and deltamethrin was investigated. One broiler house population had equivalent susceptibility to the susceptible to beta-cyfluthrin and beta-cyhalothrin, with higher susceptibility to cyfluthrin and deltamethrin. The remaining five populations demonstrated strong resistance to cyfluthrin (19-37-fold), the insecticide used most widely for management of A. diaperinus in Australia. Each cyfluthrin-resistant population demonstrated reduced susceptibility to beta-cyfluthrin (resistance ratios were 8-17-fold), deltamethrin (2.5-8-fold), and gamma-cyhalothrin (6-12-fold) compared with the laboratory population, but cross-resistance patterns varied considerably between populations. Adding piperonyl butoxide (PBO) had no effect on the susceptibility of the susceptible population to any of the insecticides, but it increased the susceptibility of each of the five cyfluthrin-resistant populations: to cyfluthrin (synergism ratio range, 1.9-5.0-fold), beta-cyfluthrin (1.6-4.1-fold), and y-cyhalothrin (1.7-2.0-fold). PBO had a more variable effect on susceptibility to deltamethrin, with three of the cyfluthrin-resistant populations being more susceptible to deltamethrin in the presence of PBO, but susceptibility of the remaining two populations was unaffected by adding PBO (synergism ratio range, 0.9-2.5-fold). Overall, the addition of PBO to the four pyrethroids had variable effects on their susceptibility. This variability indicated the presence of other resistance mechanisms in beetle populations apart from metabolic resistance. In addition, the relative importance of metabolic resistance in each beetle population varied widely between pyrethroids. Thus, it cannot be assumed that PBO will reliably synergize pyrethroids against cyfluthrin-resistant lesser mealworm populations when using it to mitigate insecticide resistance.  相似文献   

5.
Spinosad, diatomaceous earth, and cyfluthrin were assessed on two broiler farms at Gleneagle and Gatton in southeastern Queensland, Australia in 2004-2005 and 2007-2009, respectively to determine their effectiveness in controlling lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Insecticide treatments were applied mostly to earth or 'hard' cement floors of broiler houses before the placement of new bedding. Efficacy of each agent was assessed by regular sampling of litter and counting of immature stages and adult beetles, and comparing insect counts in treatments to counts in untreated houses. Generally, the lowest numbers of lesser mealworm were recorded in the house with hard floors, these numbers equalling the most effective spinosad applications. The most effective treatment was a strategic application of spinosad under feed supply lines on a hard floor. In compacted earth floor houses, mean numbers of lesser mealworms for two under-feed-line spinosad treatments (i.e., 2-m-wide application at 0.18 g of active insecticide (g [AI]) in 100-ml water/m2, and 1-m-wide application at 0.11 g ([AI] in 33-ml water/m2), and an entire floor spinosad treatment (0.07 g [AI] in 86-ml water/m2) were significantly lower (i.e., better control) than those numbers for cyfluthrin, and no treatment (controls). The 1-m-wide under-feed-line treatment was the most cost-effective dose, providing similar control to the other two most effective spinosad treatments, but using less than half the active component per broiler house. No efficacy was demonstrated when spinosad was applied to the surface of bedding in relatively large volumes of water. All applications of diatomaceous earth, applied with and without spinosad, and cyfluthrin at the label rate of 0.02 g (AI)/100-ml water/m2 showed no effect, with insect counts not significantly different to untreated controls. Overall, the results of this field assessment indicate that cyfluthrin (the Australian industry standard) and diatomaceous earth were ineffective on these two farms and that spinosad can be a viable alternative for broiler house use.  相似文献   

6.
Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyfluthrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration.  相似文献   

7.
Negative cross-resistance refers to a situation in which an insect population that is tolerant (resistant, virulent) to one insecticide is hyper-sensitive (avirulent) to a second insecticide and insects hyper-sensitive to the first compound are tolerant to the second. Most research dealing with negative cross-resistance has focused on the molecular biology and chemical aspects of this phenomenon. We explored, from a population genetics perspective, whether negative cross-resistance is feasible in the control of an insect population. As a first step towards this goal, we used a deterministic approach to evaluate different control scenarios and to identify some of the potential limitations of negative cross-resistance strategies. Specifically, we investigated how such approaches could be used in a host-plant resistance program. Homo- and heterozygous insect fitness influenced the effectiveness of the toxins in controlling the insect population. The negative cross-resistance strategy was most useful when the insects' virulence to both host-plant toxins was recessive. When virulence was dominant, there were many periods when intervention with an outside (or third) class of compounds, which had a different mode of action than that of the negative cross-resistance compounds, was needed to control the insect population. The greater the number of insect generations per plant generation, in the absence of immigration or emigration in the insect population, the greater the requirement for intervention with a third class of compound to maintain effective control of the insect population. When the toxins were rotated every insect generation, and virulence in the insect was recessive to both toxins, effective control of the insect population was maintained without intervention of a third class of compounds.  相似文献   

8.
A 3-yr field study was conducted at commercial grape (Vitis spp.) farms to evaluate insect management programs for control of the grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae) and conservation of natural enemies. At each farm, one vineyard received only reduced-risk insecticides for control of second and third generation P. viteana, whereas the comparison vineyard received conventional insecticides. Both vineyards received a conventional insecticide application for control of first generation P. viteana and other insect pests. Monitoring with pheromone traps showed no differences between programs in the total number of adult male moths trapped in vineyards, and oviposition by P. viteana was similar between the two programs in all 3 yr. During weekly samples of crop infestation, both programs had a similar percentage of clusters infested by P. viteana larvae. Berries infested by P. viteana were collected from vineyard borders during the second and third P. viteana generations and held under controlled conditions. In eight of the nine berry samples, survival of larvae was significantly lower in berries collected from vineyards managed under the reduced-risk insecticide program compared with the conventional program. Parasitism of P. citeana larvae in these samples was not consistently different between the two insecticide programs over 3 yr, and similar captures of natural enemies were found on yellow sticky traps in the two programs throughout the study. Our results indicate that integrated pest management programs incorporating reduced-risk insecticides for control of P. viteana can obtain similar or greater control of P. viteana compared with programs based solely on conventional insecticides, but they may not lead to measurable long-term increases in parasitism of P. viteana.  相似文献   

9.
Gamma-Cyhalothrin was proposed as an agent for management of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses. From 2007 to 2009, baseline susceptibility of 20 Australian broiler farm beetle populations plus an insecticide-susceptible laboratory population was determined for gamma-cyhalothrin by using topical application. In addition, repeat testing and regression analyses of specific beetle populations to gamma-cyhalothrin showed that topical application was a very reliable and repeatable testing method. The 21 populations were tested with a cyfluthrin discriminating concentration (based on LC(99.9), 0.0007% [AI]) to identify possible cross-resistance. Across all populations, there was a significant linear relationship between the gamma-cyhalothrin LC50 value and mortality induced by the cyfluthrin LC(99.9). Full cyfluthrin baseline studies of seven populations indicated that gamma-cyhalothrin was twice as toxic as cyfluthrin, even against susceptible beetles and resistance ratios at the cyfluthrin LC50 and LC(99.9), varied considerably, with maxima of 56.6 and 83.6 respectively. Corresponding ratios for gamma-cyhalothrin for the same populations were 8.6 (LC50) and 7.9 (LC(99.9)). There were no significant correlations between beetle weights and gamma-cyhalothrin LC50 or LC(99.9), values. A discriminating concentration of 0.005% (AI) gamma-cyhalothrin was chosen to detect any future changes in susceptibility. Results of this study suggest that cyfluthrin can confer cross-resistance to gamma-cyhalothrin in A. diaperinus, but the magnitude of this resistance is unpredictable. Thus, widespread and frequent cyfluthrin use in broiler houses in eastern Australia, which has selected for cyfluthrin resistance, also has resulted in reduced susceptibility to gamma-cyhalothrin. Due to its higher relative toxicity, gamma-cyhalothrin is still potentially useful for management of lesser mealworm, but due to cross-resistance issues, adoption of gamma-cyhalothrin for broiler house use will require a cautious and judicious approach.  相似文献   

10.
Integrated pest management (IPM) has the goal of combining several control methods that reduce populations of pest insects and their damage to tolerable levels and thereby reduce the use of costly pesticides that may harm the environment. Insect populations can be monitored during the season to determine when the densities exceed an economic threshold that requires treatment, often as an insecticide application. We developed a simulation model where insect populations varied in exponential growth in fields and dispersed to adjacent fields each day of a season. The first model monitored populations of individual fields in a grid of fields and treated any field with insecticide if it exceeded a threshold population (asynchronous model) as done in traditional IPM. The second model treated the entire grid of fields with insecticide when the average population of all fields exceeded the threshold (synchronous model). We found that the synchronous model at all growth and dispersal rates tested had average field populations during a season that were significantly lower and required fewer treatments than the asynchronous method. Parameters such as percentage of fallow fields, number of fields, and treatment threshold had little affect on relative differences between the two models. The simulations indicate that cooperation among growers in areawide monitoring of fields to obtain an average population estimate for use in treatment thresholds would result in significantly less insect damage and fewer insecticide treatments. The synchronous method is more efficient because population refugia are precluded from which dispersal could reintroduce insects.  相似文献   

11.
Rice is one of the most important food crops in the world. China has the second largest area of the rice growing in the world and the highest yield of rice produced. Infestation by insect pests, especially rice planthoppers, stem borers and leaf folders, is always a serious challenge to rice production in China. Current methods for controlling insect pests in China mainly include good farming practices, biological control, breeding and growing resistant varieties, and the use of chemical insecticides. However, for farmers, the favorite method for insect pest control is still the application of chemical insecticide, which not only causes severe environmental pollution and the resurgence of herbivores but also reduces populations of the natural enemies of herbivores. To control insect pests safely, effectively and sustainably, strategies encouraging biological control are currently demanded. Here we review the progress that has been made in the development and implementation of biological controls for rice in China since the 1970s. Such progress includes the species identification of the natural enemies of rice insect pests, the characterization of their biology, and the integration of biological controls in integrated pest management. To develop effective ecological engineering programs whose aim is to implement conservation biological controls, further research, including the evaluation of the roles of plants in non-crop habitats in conservation biological controls, volatiles in enhancing efficiency of natural enemies and natural enemies in manipulating insect pests, and education to increase farmers’ knowledge of biological controls, is proposed.  相似文献   

12.
We used ecotypic variation in big sagebrush (Artemisia tridentata) to examine potential trade-offs between inherent growth rate and tolerance or resistance to herbivory. Seeds were obtained from seven geographic populations, and 1,120 seedlings were established in a common garden. In one set of plots, plants were subjected to five treatments: control, regular insecticide spray, moderate browsing, severe browsing, or moderate browsing plus insecticide. Plants in a second set of plots were all untreated, and were used to estimate ambient growth, flower production, and susceptibility to herbivorous insects. In the first growing season, population differences in relative growth rate produced approximately seven-fold variation in mean biomass. Two populations of basin big sagebrush (A. tridentata tridentata) and one population of mountain big sagebrush (A. tridentata vaseyana) grew fastest; those of Wyoming big sagebrush (A. tridentata wyomingensis) showed the slowest growth. Bi-weekly application of insecticide for two growing seasons had no effect on the growth of either browsed or unbrowsed plants. All populations showed compensatory growth (but not overcompensation) in response to browsing, but the degree of compensation was unrelated to inherent growth rate. Similarly, there was no consistent relationship between plant growth rate and flower production in the second growing season. Some insects colonized fast-growing populations more frequently than slow-growing ones, but patterns of insect colonization were species-specific. At the level of geographic populations and subspecies, we found little evidence of a built-in trade-off between inherent growth rate and the ability to tolerate or resist herbivory. Because population ranks for growth rate changed substantially between seasons, attempts to correlate growth and defense characters need to account for differences in the growth trajectories of perennial plants.  相似文献   

13.
Imidacloprid has been used for many years to control planthopper Nilaparvata lugens (St?l) (Homoptera: Delphacidae) in China. To provide resistance assessment for the national insecticide resistance management program, we collected a total of 42 samples of the planthoppers from 27 locations covering eight provinces to monitor their dose responses and susceptibility changes to imidacloprid over an 11-yr period (1996-2006). Results showed that most field populations maintained susceptibility from 1996 to 2003 except for a population from Guilin, Guangxi, in 1997, which showed a low level of resistance to imidacloprid. However, surveys conducted in 2005 indicated that 16 populations from six provinces quickly developed resistance with resistance ratios ranging from 79 to 811. The data collected in 2006 revealed that the resistance levels in 12 populations collected from seven different provinces decreased slightly (RR = 107-316), except the Tongzhou population (Jiangsu Province), which developed 625-fold resistance. Dominant and intensive use of imidacloprid in a wide range of rice, Oryza savita L., growing areas might be a driving force for the resistance development. Migration of the insect also significantly boosted the resistance levels due to extensive and intensive use of imidacloprid in emigrating areas and continuous postmigration sprays of the chemical. In addition, laboratory resistance selection using imidacloprid showed that resistance ratio increased to 14-fold after 27 generations, suggesting that quick resistance development might be associated with more frequent applications of the insecticide in recent years.  相似文献   

14.
Conventional insecticides have been widely used to control cockroaches but these insects have developed resistance to several compounds. Safer insecticides with a low toxicity such as oxadiazine have been advanced: indoxacarb (30% WG) is designated to be a reduced-risk insecticide and is considered as an organophosphate replacement. Insecticidal activity occurs via blockage of the sodium channels in the insect nervous system. In a first series of experiments, the toxicity of different concentrations (15, 20, 25 and 30 ppm) administrated by topical application to newly emerged adults was studied on the German cockroach Blattella germanica, and the LC50 and LT50 values were determined. In a second series of experiments, the compound was applied at its LC50 and LC90 over a period of 6 days, and the effects on the biochemical composition of ovaries (proteins, carbohydrates and lipids) during the adult life (2, 4 and 6 days) were examined.  相似文献   

15.
研究了不同温度下埃玛菌素(emamectin)对小菜蛾Plutella xylostella幼虫的毒力,并用生命表法研究了25℃下埃玛菌素亚致死剂量LC30)处理小菜蛾3龄初期幼虫后对其子代的影响。结果表明,埃玛菌素为典型的正温度系数药剂,对小菜蛾幼虫的触杀毒力在温度16~31℃间提高了10倍左右,口服毒力在相同温度范围内提高1 000倍左右,显示了埃玛菌素对该虫极高的口服毒力。25℃下埃玛菌素亚致死剂量处理当代幼虫后,对其子代的存活和繁殖均有明显影响,处理组和对照组子代的世代存活率分别为3.7%和35.5%,平均产卵量分别为92.4和148.3,种群趋势指数分别为1.8和27.4,净增殖率(R0)分别为3.66和33.81,内禀增长力(rm)分别为0.0665和0.0978。  相似文献   

16.
Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) are the two most important insect pests of cotton production in Australia and require application of insecticides to control them. H. armigera has developed resistance to several insecticides but H. punctigera has not. Cost-effective management of insecticide resistance requires that growers be able to determine the proportion of H. armigera eggs or young larvae present on their crop before applying insecticides. This is impossible visually. We generated two monoclonal antibodies that reacted with the insect protein "lipophorin" and were capable of discriminating individuals of the two species at all life-stages. The antibodies were incorporated into a rapid test kit that was tested under field conditions over two growing seasons. Results obtained with the kit agreed closely with those obtained by rearing larvae through to second instar.  相似文献   

17.
Insects feeding in conifer cones are difficult to control with nonsystemic insecticides. Newly developed systemic insecticides that can be injected into tree trunks may be a possible way of reducing both insect damage and negative side-effects to the surrounding environment, compared with conventional spraying. Several insecticides that could be injected into tree stems were tested on Picea abies (L.) Karst. In one experiment, insecticides (bifenthrin, deltamethrin, abamectin, and imidacloprid) were injected during flowering; in a second experiment two of these insecticides (abamectin and imidacloprid) were injected 1 yr before the expected flowering. In the second experiment insecticide treatment was also combined with treatments with the flower stimulating hormone, gibberellin (GA(4/7)). The only insecticide that reduced damage was abamectin, both after injection during flowering and after injection 1 yr before the expected flowering. Injections with GA(4/7) increased flowering and were as efficient as the conventional application method of drilling but abamectin was not effective in combination with the drilling method. There was no negative effect of the insecticide injections on seed quality. The injections were ineffective against the seed chalcid Megastigmus strobilobius (Ratzeburg), which was found to have an unexpected, negative effect on seed quality. Our results suggest that it may be possible to reduce damage from certain insect species, and to increase flowering by injecting abamectin and GA(4/7) in the year before a cone crop.  相似文献   

18.
ABSTRACT: BACKGROUND: The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world's poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. RESULTS: Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. CONCLUSION: The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey.  相似文献   

19.
The development of resistance in aphid populations highlights the importance of biological control as a pest management tactic. Four treatments were evaluated to determine the effects of pesticides on the population dynamics of Aphis gossypii Glover and Neozygites fresenii (Nowakowski) Batko: (1) weekly applications of the insecticide imidacloprid (Provado 1.6 F); (2) weekly applications of the fungicide chlorothalonil (Bravo 720); (3) applications of imidacloprid (Provado 1.6 F) when aphid densities exceeded 30 aphids per leaf, and (4) untreated control. Differences in aphid density among the four treatments were shown only to be significant during the 1997 growing season; however, aphid densities were greater in the chlorothalonil treatment than in the other treatments during each growing season. Percentage of N. fresenii-killed aphids was most often highest in the chlorothalonil treatment as well. The fungal epizootic caused by N. fresenii was delayed approximately 1 wk in the chlorothalonil treatment when compared with the other treatments. This delay allowed the aphids to temporarily escape suppression by the fungus and to continue to increase in density until the density-dependent effects of the epizootic overwhelmed the aphid population. N. fresenii also appeared to persist in the system when imidacloprid was in use and does appear responsible for initial aphid reductions. Treatment did not appear to have a large influence on yield outcome. Yield was variable from year to year and from location to location.  相似文献   

20.
1 In two experiments carried out in Guadeloupe, barriers were used to reduce the entry of the virus vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) to tomato plots. The barriers erected around the crop were of insect‐proof cloth fences (<50 mesh), 1.5 m in height, in the first experiment with a deltamethrin‐treated, insect‐attracting strip facing inwards, and, in the second, with the barrier but no insecticide‐treated strip. 2 A mathematical model of epidemic development was fitted to the symptom data from the treated and control (unprotected) tomato plots. There were two viruses present, tomato yellow leaf curl and potato yellow mosaic; specific detection confirmed that symptoms gave an accurate indication of infection and that the two virus diseases had similar progress curves. 3 Parameter estimates obtained by model‐fitting suggested that the barriers reduced vector immigration by approximately 12‐fold but that B. tabaci retention within the plots was also increased slightly despite the mortality caused by the insecticide‐treated strips. Disease establishment was delayed by approximately 2 weeks. The results obtained in the second experiment involving barriers deployed without insecticide‐treated strips could be explained by a large increase in B. tabaci retention within the barriers resulting in more rapid virus disease progress than in controls. The results of mathematical modelling indicate that partial insect barriers can be worse than none because sufficient whiteflies can enter to establish a population and, at the same time, large numbers are retained in the barrier plot, with the net effect being a more rapid population increase than in the absence of barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号