首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

2.
An experimental investigation of the performance of a commercially available vapor absorption refrigeration (VAR) system is described. The natural gas-fired VAR system uses aqua-ammonia solution with ammonia as the refrigerant and water as the absorbent and has a rated cooling capacity of 10 kW. The unit was extensively modified to allow fluid pressures and temperatures to be measured at strategic points in the system. The mass flow rates of refrigerant, weak solution, and strong solution were also measured. The system as supplied incorporates air-cooled condenser and absorber units. Water-cooled absorber and condenser units were fitted to extend the VAR unit's range of operating conditions by varying the cooling water inlet temperature and/or flow rates to these units. The response of the refrigeration system to variations in chilled water inlet temperature, chilled water level in the evaporator drum, chilled water flow rate, and variable heat input are presented.  相似文献   

3.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

4.
The development of an absorption based miniature heat pump system is motivated by the need for removal of increasing rates of heat from high performance electronic chips such as microprocessors. The goal of the present study is to keep the chip temperature near ambient temperature, while removing 100 W of heat load. Water/LiBr pair is used as the working fluid. A novel dual micro-channel array evaporator is adopted, which reduces both the mass flux through each micro-channel, as well as the channel length, thus reducing the pressure drop. Micro-channel arrays for the desorber and condenser are placed in intimate communication with each other using a hydrophobic membrane. This acts as a common interface between the desorber and the condenser to separate the water vapor from LiBr solution. The escaped water vapor is immediately cooled and condensed at the condenser side. For direct air cooling of condenser and absorber, offset strip fin arrays are used. The performance of the components and the entire system is numerically evaluated and discussed.  相似文献   

5.
The advanced energy storage technology proposed and patented by authors can be applied for cooling, heating, dehumidifying, combined cooling and heating, and so on. It is also called the variable mass energy transformation and storage (VMETS) technology in which the masses in one or two storage tanks change continuously during the energy charging and discharging processes. This paper presents an advanced energy storage system using aqueous lithium bromide (H2O–LiBr) as working fluid. As one of VMETS systems, this system is a closed system using two storage tanks. It is used to shift electrical load and store energy for cooling, heating or combined cooling and heating. It is environmental friendly because the water is used as refrigerant in the system. Its working principle and process of energy transformation and storage are totally different from those of the traditional thermal energy storage (TES) systems. The electric energy in off-peak time is mostly transformed into the chemical potential of the working fluid and stored in the system firstly. And then the potential is transformed into cold or heat energy by absorption refrigeration or heat pump mode when the consumers need the cold or heat energy. The key to the system is to regulate the chemical potential by controlling the absorbent (LiBr) mass fraction or concentration in the working fluid with respect to time. As a result, by using a solution storage tank and a water storage tank, the energy transformation and storage can be carried out at the desirable time to shift electric load efficiently. Since the concentration of the working solution in the VMETS cycle varies continuously, the working process of the VMETS system is dynamic. As the first part of our study, the working principle and flow of the VMETS system were introduced first, and then the system dynamic models were developed. To investigate the system characteristics and performances under full-storage and partial-storage strategies, the numerical simulation will be performed in the subsequent paper. The simulation results will be very helpful for guiding the actual system and device design.  相似文献   

6.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   

7.
In this study, the transient behavior of a domestic refrigerator is investigated by the use of an X-ray system. The studies are made on a two-door upright freezer with a volume of 435 liters, and which has an automatic defrost feature. The refrigerant is R134a. During the experimental study, ambient temperature is held at 25±2 °C. Real time X-ray video images of the refrigeration circuit are taken during the pull-down (cooling down of the refrigerator from ambient temperature) and cyclic periods as well. X-ray images are recorded by focusing to on the dryer, capillary exit, evaporator inlet, and accumulator regions specifically. In order to watch evaporator and dryer sections continuously, two identical experiments are made while the probe is focused on either the evaporator or dryer sections each time. By matching the video images and temperature data, the flow regimes, charge inventory, accumulator functioning, and changes of subcooling degree at dryer inlet are explained. Possible flow induced noise mechanisms are identified.  相似文献   

8.
Experimental investigation of mass recovery adsorption refrigeration cycle   总被引:1,自引:0,他引:1  
The study investigates the performance of silica gel–water adsorption refrigeration cycle with mass recovery process by experimental prototype machine. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The mass recovery cycle utilizes the pressure difference to enhance the refrigerant mass circulation. Moreover, novel cycle was proposed for improvement of cooling output. In our previous study, simulation analysis shows that mass recovery cycle has the advantage over conventional single-stage. Experiments with prototype machine were conducted to investigate the performance improvement of mass recovery cycle in the present paper. Specific cooling power (SCP) and coefficient of performance (COP) were calculated with experimental data to analyze the influences of operating conditions. The proposed cycle was compared with the single-stage cycle in terms of SCP and COP. The results show that SCP of mass recovery cycle is superior to that of conventional cycle and mass recovery cycle is effective with low temperature heat source.  相似文献   

9.
Experimental comparisons are made on the performance of a room air conditioner using micro-channel evaporator with the refrigerant flowing in the Upward Flow mode (UF mode, meaning refrigerant flowing upward from the bottom) and Downward Flow mode (DF mode, meaning refrigerant flowing downward from the top). Test results show that UF mode develops a superior refrigerant distribution in the micro-channels to what DF mode does. This is then illustrated by the infrared thermographs at the nominal operating condition. Subsequently, the effect of the width of throttle opening on the sample unit performance is investigated experimentally in the micro-channel evaporator adopting the UF mode. Measurement and calculation results of pressure difference between evaporator inlet and outlet, mean temperature of the evaporator surface, cooling capacity, input power and EER show that the tested unit operates with the best performance with the refrigerant pressure of 993.61 kPa at the inlet of micro-channel evaporator. Infrared thermographs of the working evaporator verify this conclusion.  相似文献   

10.
This paper is a part in a series that reports on the experimental study of the performance of the two-phase ejector expansion refrigeration cycle. In the present study, three two-phase ejectors are used as an expansion device in the refrigeration cycle. The effects of throat diameter of the motive nozzle, on the coefficient of performance, primary mass flow rate of the refrigerant, secondary mass flow rate of the refrigerant, recirculation ratio, average evaporator pressure, compressor pressure ratio, discharge temperature and cooling capacity, which have never before appeared in open literature, are presented. The effects of the heat sink and heat source temperatures on the system performance are also discussed.  相似文献   

11.
This paper presents a steady-state model for predicting the performance of vapour-compression liquid chillers over a wide range of operating conditions. The model overcomes the idealisations of previous models with regard to modelling the heat exchangers. In particular, it employs an elemental NTU- methodology to model both the shell-and-tube condenser and evaporator. The approach allows the change in heat transfer coefficients throughout the heat exchangers to be accounted for, thereby improving both physical realism and the accuracy of the simulation model. The model requires only those inputs that are readily available to the user (e.g. condenser inlet water temperature and evaporator water outlet temperature). The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle. The methodology employed within the model also allows the performance of chillers using refrigerant mixtures to be modelled. The model is validated with data from one single screw chiller and one twin-screw chiller where the agreement is found to be within ±10%.  相似文献   

12.
The performance of transcritical R744 systems with direct expansion (DX) can be significantly improved by implementing a Flash Gas Bypass (FGB). The idea behind the concept is to bypass refrigerant vapor, created during the isenthalpic expansion process, around the evaporator. By feeding the evaporator with liquid refrigerant, pressure drop is reduced and refrigerant distribution is improved. With R744 as the working fluid, increased refrigerant-side heat transfer coefficients are expected as well. In addition, the FGB concept proves to be beneficial in terms of system design, in particular for combined air-conditioning and heat pumping applications. An experimental comparison to a conventional DX-system reveals that FGB increases the cooling capacity and COP at the same time by up to 9 and 7%, respectively. Even larger improvements are possible in case a variable speed compressor is utilized to match the performance of the conventional DX-system. A simulation model helps to separate the individual improvement mechanisms. It was found that the reduction of refrigerant-side pressure drop is the dominant improvement mechanism of FGB.  相似文献   

13.
This paper discusses the conservation of energy in a cogeneration system. A steam power cycle (Rankine) produces electrical power 2 MW and steam is bleeded off from the turbine at 7 bar to warm a factory or units of buildings during the winter or to supply a steam ejector refrigeration cycle to air-conditioning the same area during the summer. In the summer this system can be as alternative solution instead of absorption. Certainly the ejector refrigeration unit is more economical than absorption unit. The ratio of electrical power/heat is varied into the region (0.1–0.4) and the evaporator temperature of the ejector cycle is varied into the region (10–16 °C). A computer program has been developed for the study of performance parameters of the cogeneration system.  相似文献   

14.
An economic analysis of the role of biogas and cooling water in a lithium bromide—water absorption system has been carried out to optimize the generator, condenser and absorber temperatures at a given evaporator temperature and solution pumping rate. The analysis has been repeated for different pumping rates (PR) to determine the optimum PR corresponding to the minimum over-all operating cost of the system. The study has also been carried out for the condition when biogas in the generator and cooling water in the absorber and condenser are supplied at equal flow-rates. It is found that the performance of the LiBr-H2O system at equal biogas and cooling water flow-rates is about 5.988% higher than when operated at the minimum over-all operating cost, the latter being cheaper by only 2.71%. For low evaporation temperatures, use of a preheater in a LiBr-H2O system creates a crystallization problem when operated at low pumping rates. The study has therefore been extended for a system without preheater. The parameters under study are illustrated graphically against the generator temperature. Equations to obtain the corresponding optimum condenser and absorber temperature are given. The functional relationship between crystallization limit and absorbent temperature has also been obtained. The optimum operating parameters are presented graphically.  相似文献   

15.
In this study, a CO2 transcritical cycle model without imposing any excessive constraints such as fixed discharge pressure and suction pressure is developed. The detailed geometrical variation of the gas cooler and the evaporator have been taken into account. The model is validated with the experimental measurements. Parametric influences on the CO2 system with regard to the effect of dry bulb temperature, relative humidity, inlet water temperature, compressor speed, and the capillary tube length are reported. The COP increases with the dry bulb temperature or the inlet relative humidity of the evaporator. Despite the refrigerant mass flowrate may be increased with the inlet water temperature, the COP declines considerably with it. Increasing the compressor speed leads to a higher heating capacity and to a much lower COP. Unlike those of the conventional sub-critical refrigerant, the COP of the transcritical CO2 cycle does not reveal a maximum value against the capillary tube length.  相似文献   

16.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

17.
One of the authors has proposed a novel transport/storage system for the waste cold from the gasification process of liquefied natural gas (LNG), which consists of an evaporator, a cold trap, and a pipeline. In order to estimate the performance of this system, one should know the pressure in the evaporator, in which evaporation–freezing of a PCM occurs, and in the cold trap, as well as the pressure drop of the pipeline due to the flow of low pressure vapor of the PCM. In this paper, the cooling/freezing phenomena of a water droplet due to evaporation in an evacuated chamber was experimentally examined, and the heat transfer dominating the evaporation-freezing phenomena was investigated in order to estimate the pressure in the evaporator. From the results, it was shown that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through a remarkable supercooling state, and that the cooling rate of the water droplets were dominated by heat transfer within the droplet under the abrupt evacuation condition. The later result means that, in order to obtain an ice particle by evaporation–freezing, the surroundings of the water droplet should be evacuated at the pressure as low as the saturate pressure of water at the maximum supercooling temperature of the droplet.  相似文献   

18.
This paper presents a novel neural network (NN) to control an ammonia refrigerant evaporator. Inspired by the latest findings on the biological neuron, a dynamic synaptic unit (DSU) is proposed to enhance the information processing capacity of artificial neurons. Treating the dynamic synaptic activity after the nonlinear somatic activity helps to capture the dynamics demarcated by the Gaussian activation pertaining to the input space. This practice leads to a remarkable reduction in curse of dimensionality. The proposed NN architecture has been compared with two other conventional architectures; one with dynamic neural units (DNUs) and the other with nonlinear static functions as perceptrons. The objective is to control evaporator heat flow rate and secondary fluid outlet temperature while keeping the degree of refrigerant superheat in the range 4–7 K at the evaporator outlet by manipulating refrigerant and evaporator secondary fluid flow rates. The drawbacks of conventional approaches to this problem are discussed, and how the novel method can overcome them are presented. An evolutionary approach is adopted to optimize the parameters of the NN controllers. Then evaporator process model is accomplished as a combination of governing equations and a sub NN resulting in a simple and sufficiently accurate model. The effectiveness of the proposed dynamic NN controller for the evaporator system model is validated using experimental data from the ammonia refrigeration plant.  相似文献   

19.
For refrigerated display cabinets to perform their function of keeping food cold, there must be free movement of air through the evaporator. The moisture in the ambient air entrained in the cabinet forms frost on the evaporator. It is traditional for heat to be applied to the evaporator at regular intervals to melt this frost. The frequency, typically 3–4 times per day, is enough to avoid the frost becoming excessive even in extreme conditions. For much of the time defrosting is not always necessary. A large portion of the energy used during a defrost is an overhead – heating and then cooling the metal and the food rather than melting the frost. The effect of this is examined in the paper along with the results from testing an algorithm that detects the need for a defrost from the pattern of refrigerant flow (or evaporator exit superheat). The algorithm allows the number of defrosts to be reduced without excessively raising the temperature of food stored in the cabinet. The reduction in energy and carbon dioxide emission were examined and were shown to be substantial.  相似文献   

20.
Refrigeration cogeneration systems which generate power alongside with cooling improve energy utilization significantly, because such systems offer a more reasonable arrangement of energy and exergy “flows” within the system, which results in lower fuel consumption as compared to the separate generation of power and cooling or heating. This paper proposes several novel systems of that type, based on ammonia–water working fluid. Importantly, general principles for integration of refrigeration and power systems to produce better energy and exergy efficiencies are summarized, based primarily on the reduction of exergy destruction. The proposed plants analyzed here operate in a fully-integrated combined cycle mode with ammonia–water Rankine cycle(s) and an ammonia refrigeration cycle, interconnected by absorption, separation and heat transfer processes. It was found that the cogeneration systems have good performance, with energy and exergy efficiencies of 28% and 55–60%, respectively, for the base-case studied (at maximum heat input temperature of 450 °C). That efficiency is, by itself, excellent for cogeneration cycles using heat sources at these temperatures, with the exergy efficiency comparable to that of nuclear power plants. When using exhaust heat from topping gas turbine power plants, the total plant energy efficiency can rise to the remarkable value of about 57%. The hardware proposed for use is conventional and commercially available; no hardware additional to that needed in conventional power and absorption cycles is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号