首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The issue of sea level rise is receiving considerable attention all over the world. Although the Indian stations have shown mixed trends, a positive sea level trend has been noticed in the Hooghly Estuary, situated on the east coast of India. The Hooghly River serves as a navigable waterway to Calcutta and Haldia ports. The river is tidal for nearly 250 km. To study the water levels and tidal currents in the lower part of the Hooghly Estuary, from sea face at Sagar to Hooghly Point, a vertically integrated numerical model has been used. The model is fully nonlinear and uses a semiexplicit finite‐difference scheme to solve the basic hydrodynamic equations on a staggered grid. This model is coupled with a one‐dimensional model, which has been used for the upper estuary from Hooghly Point to Swarupganj, where the flow is unidirectional. The computed water levels and currents are found to be in good agreement with the available observations. This model is applied to study the alterations in tidal circulation for a rise and fall in the sea level. The results have shown a substantial increase in the amplitude and velocities of the tidal wave due to the sea level rise.  相似文献   

2.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

3.
This paper has two purposes. The first is to study the circulation and salinity in Hooghly Estuary, along the east coast of India and the second is to compare the performance of two turbulence closure schemes by modelling it. A breadth averaged numerical model using a sigma co-ordinate system in the vertical is briefly described. Vertical diffusion of momentum and salt are parameterized by a simple first-order turbulent closure or by a one equation model for turbulent kinetic energy (TKE) which uses a specified mixing length. The results are compared with the available neap and spring tide observations along the estuary for both low and high discharge periods.The computed elevations and currents are in reasonable agreement with the observations showing no major differences in vertical current profiles by both the turbulent schemes. However, there is a slight under-prediction of bottom currents. The salinity profiles predicted by TKE model show better matching with observations. Statistical tests are also conducted to study the comparative performance of the turbulent closure schemes. The maintenance of two layer structure in residual currents and salt variability are also studied by using the model.  相似文献   

4.
长江口整治工程对盐水入侵影响研究   总被引:5,自引:1,他引:5  
根据实测资料分析了长江口的盐水入侵问题。采用调和常数得到外海控制潮位,用流量控制上游边界,建立了长江口、杭州湾及邻近海域正交曲线坐标系下的二维潮流和盐度数学模型。模型验证了长江口洪、枯季时大、中、小潮的潮位、流速、流向和盐度,较好地模拟了口外顺时针旋转流和口内往复流的特征,反映了外海盐水入侵和北支盐水倒灌的运移特性。在此基础上对长江口综合整治规划方案进行了研究,讨论了整治工程对减轻长江口盐水入侵的作用。  相似文献   

5.
Tidal flow characteristics in the Hudson-Raritan Estuary are studied with a two-dimensional, depth-averaged finite difference model. Rivers are modeled as one-dimensional channels with variable width and depth and are calculated as part of the two-dimensional calculations at no extra computational cost. An extensive comparison of numerical, tidal calculations with observational data than has previously appeared in the literature is presented. Computed velocity and tidal elevation fields compare well with observations. Comparison with observations at the Sandy Hook-Rockaway Point transect indicates that the barotropic tidal residual current contributes significantly to the overall steady circulation in the harbor. The residual current is mainly induced by the coastal geometry and bottom topography through the nonlinear inertia effects.  相似文献   

6.
Circular shaped density plumes of low turbidity, low fecal indicator (Escherichia coli and enterococci) concentrations, and high salinity have been observed near the Industrial Canal in Lake Pontchartrain, north of the City of New Orleans. A conceptual model in polar coordinates and a numerical model are developed, together with data analysis, to illustrate the dense plume. It is demonstrated that the northward expansion of the plume occurs under northerly winds. The northward expansion of the plume occurs under northerly winds that drive downwind flow at the surface and upwind radial flow at the bottom. Northerly wind-induced straining, similar to tidal straining, promotes vertical stratification. As a result, the water becomes stratified near a thin bottom layer (<1 m), within which density currents are facilitated. The stability of the stratified plume suppresses wind-induced turbulent mixing inside the plume. The bottom water outside of the plume is more effectively stirred by the wind, the result being that the suspended sediment concentration outside of the plume area is much higher than inside. This contrast in mixing makes the plume visible from the surface by satellites even though the stratification is at the bottom. Laterally, wind stress produces a torque (vorticity) in areas of non-uniform depth such that upwind flow is developed in deep water and downwind flow in shallow water. The continuity requirement produces an upwind flow along the axis of the Industrial Canal (IC). The upwind flow is balanced by the downwind flow over the shallower peripheral areas along the coast.  相似文献   

7.
An experimental survey of the estuary of Milford Haven has been carried out in which velocity, temperature and salinity have been measured over the full extent of the estuary during a complete spring and a complete neap- tidal cycle. The measurements were taken from three survey vessels, each of which was used to service six or seven survey points so that the measurements comprised a total of about 40 vertical profiles distributed over a grid of 20 survey points for each tide. Tide level measurements at two points were made simultaneously. The experimental measurements of tidal level have been used to calibrate a two-dimensional mathematical model based upon a new numerical representation of the shallow water equations. The predictions of velocity for the model have been compared with vertically integrated velocities calculated from experiments, and good agreement has been found over the full extent of the estuary.The effect of a strong south-westerly wind in the estuary has been examined in numerical simulation.  相似文献   

8.
The relative impacts of tidal (neap, spring) and river discharge (including a flood event) forcing upon water and sediment circulation have been examined at the rock-bound Guadiana estuary. Near-bed and vertical profiles of current, salinity, turbidity, plus surface suspended sediment concentrations (SSC, at some stations only), were collected at the lower and central/upper estuary during tidal and fortnightly cycles. In addition, vertical salinity and turbidity profiles were collected around high and low water along the estuary. Tidal asymmetry produced faster currents on the ebb than on the flood, especially at the mouth. This pattern of seaward current dominance was enhanced with increasing river flow, due to horizontal advection that was confined within the narrow estuarine channel. The freshwater inputs and, at a degree less, the tidal range controlled the vertical mixing and stratification importance. Well-mixed (spring) and partially stratified (neap) conditions alternated during periods of low river flows, with significant intratidal variations induced by tidal straining (especially at the partially stratified estuary). Highly stratified conditions developed with increasing river discharge. Intratidal variability in the pycnocline depth and thickness resulted from current shear during the ebb. A salt wedge with tidal motion was observed at the lower estuary during the flood event. Depending on the intensity of turbulent mixing, the residual water circulation was dominantly controlled either by tidal asymmetry or gravitational circulation. The SSC was governed by cyclical local processes (resuspension, deposition, mixing, advection) driven by the neap-spring fluctuations in tidal current velocities. More, intratidal variability in stratification indicated the significance of tidal pumping at the partially and highly stratified estuary. The estuary turbidity maximum (ETM) was enhanced with increasing current velocities, and displaced downstream during periods of high river discharge. During the flood event, the ETM was expelled out of the estuary, and the SSC along the estuary was controlled by the sediment load from the drainage basin. Under these highly variable river flow conditions, our observations suggest that sand is exported to the nearshore over the long-term (>years).  相似文献   

9.
钱塘江河口盐度数值模拟   总被引:1,自引:0,他引:1  
强潮河口盐水入侵对饮用水源地危害极大。基于平面二维水动力盐度模型, 对典型强潮河口—钱塘江的水动力及盐水入侵过程进行了数值模拟研究。结果表明枯水径流时盐度变化与潮位过程曲线类似, 潮差对盐度大小影响显著, 径流量的增加将逐渐减小其相似程度。当流量增加到一定程度后, 继续增加的一定径流量所产生的抑咸效果减弱, 水资源有效利用率降低, 此时允许水源地盐度超标并改从蓄淡避咸水库取水可有效节约水资源。盐度平面分布显示, 盐水入侵在强潮河口弯道处受涨潮流主流线影响明显, 靠近主流线一岸的盐度大于对岸, 单从盐水入侵角度考虑, 强潮河口弯道段的取水口应设置在远离涨潮流主流线一岸。钱塘江河口盐度数值模拟对于研究减轻盐水入侵对水源地危害的措施具有指导意义。  相似文献   

10.
A modelling study of residence time in a macro-tidal estuary   总被引:2,自引:0,他引:2  
This paper outlines a numerical modelling study to predict the average residence time of a conservative tracer in a macro-tidal estuary, namely the Mersey Estuary, UK. An integrated hydrodynamic-dispersion model was used to predict the average residence time in the estuary for various tidal level and freshwater discharge conditions. The numerical model was verified against six sets of field measured hydrodynamic data, with the model-predicted water elevations and salinity levels generally agreeing well with the field measurements. The numerical model results show that in the Mersey Estuary both the tidal level and river discharge affect significantly the predicted average residence time. The value of the average residence time is also shown to be closely linked to the intensity of the residual tidal current. This is due to the fact that a large proportion of the Upper and Inner Estuary dries out during low tides, thus a significant amount of the tracer material is transported through the deep channels. An increase in the freshwater discharge causes a considerable increase in the intensity of the residual current along the main channels and thus a reduction in the average residence time. The predicted overall tracer residence time for the whole estuary is relatively short for a relatively large estuary, ranging from less than 1 day to 4 days for various tidal level and freshwater flow combinations. When the tidal range and freshwater discharge are both small, then the local tracer residence time in the upper part of the estuary can be significantly longer than the values predicted for the middle and lower reaches of the estuary.  相似文献   

11.
Generally one dimensional(1-D) empirical salinity intrusion model is limited to natural alluvial estuary. However,this study attempts to investigate its ability to model a sheltered alluvial estuary of the Terengganu River in Malaysia. The constructed breakwater at the mouth of the river shelters the estuary from direct influence of the open sea. The salinity density along the estuary was collected during the wet and dry seasons for scenarios before and after the constructed breakwater. Moreover, the freshwater discharges, tidal elevations and bathymetry data were also measured as model inputs. A good fit was demonstrated between simulated and observed variables,namely salinity distribution and intrusion length for both scenarios. Thus, the results show that 1-D empirical salinity model can be utilized for sheltered estuarine condition at the Terengganu Estuary, but with an appropriate determination of an initial point. Furthermore, it was observed that the salinity intrusion in the study area is largely dependent on the freshwater discharge rather than tidal elevation fluctuations. The scale of the salinity intrusion length in the study area is proportional to the river discharge of the –1/2 power. It was appeared that the two lines of the 1-D empirical salinity model and discharge power based equation fitted well to each other, with the average predicted minimum freshwater discharge of 150 m3/s is going to be required to maintain acceptable salinity levels during high water slack(HWS) near the water intake station, which is located at 10.63 km from river mouth.  相似文献   

12.
13.
Based on the non-equilibrium suspended load transport equation,bed load transport equationand sediment transport capacity formulas derived by Dou et al.,a 2-D numerical model of total sedimenttransport in the Yangtze Estuary is presented.In the model,the actions of tidal currents and wind waves andthe effect of salinity on sediment transport are considered.An automatically generated boundary-fitted grid isused to fit the boundaries of the estuary and the boundaries of engineering projects.The verification of calcu-lations shows that the sediment concentration,the deformation of riverbed and siltation in the channels causedby typhoons can be successfully simulated.  相似文献   

14.
Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simplest unsteady analytical so- lution of salinity intrusion is deduced and the estimation formula of diffusion coefficient is obtained in this paper. The unsteady solution indicates that salinity process in estuaries results from the interaction of runoff and tidal current, and its amplitude is in direct proportion to the product of the velocity of runoff water and the amplitude of tidal flow velocity and in inverse proportion to the diffusion coefficient and the tidal angular frequency, and its phase lag tidal flow with 7/2 which reveals the basic features of the maximum salinity appearing after flood slack and the minimum salinity appearing before ebb slack under the effect of runoff (the advance or lag time is relative to the magnitude of runoff and tidal flow). According to the measured flow velocity and salinity data, the salinity diffusion coefficient could be estimated. Finally, with the field data of observing sites on the deepwater navigation channel of the Yangtze Estuary, the diffusion coefficient is calculated and a comparative analysis of simulated and measured of salinity process is made. The results show that the solution can comprehensively reflects the basic characteristics and processes of salinity intrusion under the interaction of runoff and tidal flow in estuaries. The solution is not only suitable for theoretical research, but also convenient for estimating reasonable physical parameters and giving the initial condition in the salinity intrusion numerical simulation.  相似文献   

15.
Tidal currents derived from current meter measurements are compared with the output from a barotropic tidal model of the New Zealand region. For the semi‐diurnal constituents there was very good agreement for the M2 tide and good agreement for the S2 tide. For the diurnal constituents (Kl, Ol) it was found that as the amplitude of the constituents decreased so did both the model/observation agreement and the accuracy of the observed tidal ellipse parameters. Consequently it was not possible to decide whether differences arose through shortcomings in the model or in the data. However, the overall performance of the model as a prognostic tool for ocean tidal current simulation appears to be good.  相似文献   

16.
Numerical modeling of a semienclosed narrow channel demonstrates the dynamical dependency of an estuarine residual circulation (ERC) on tidal amplitudes. The ERC is defined by tidally-averaged current field. The tidally-averaged fields show that the ERC-strength variation is classified into highly stratified, partially stratified and weakly stratified ranges, respectively. The ERC becomes weaker as the tidal amplitude (and hence vertical mixing) increases in the highly and weakly stratified ranges. However, the ERC becomes stronger oppositely in the partially stratified range. The nonlinear forces induced by tides significantly affect the ERC as well as the pressure gradient force due to the freshwater flux and the vertical stress divergence (vertical eddy viscous force). In particular, the tidal stress and tidally-oscillating component of vertical stress divergence are quite important in ERC dynamics. The latter causes the enhancement of ERC in proportion to the vertical mixing in the partially stratified range.  相似文献   

17.
One of the challenges in effluent transport modeling in coastal tidal environments is the proper specification of initial dilution in connection with the far-field transport phenomena. An approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulating the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuea. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. The hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. It is demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the dilution ratio and effluent concentration in the circulation model grid cell match the concentration calculated by the near-field plume model.  相似文献   

18.
The variations of current circulation, salt intrusion, and vertical stratification under different river flow and wind conditions in the Pamlico River Estuary (PRE) were investigated in this paper using a three-dimensional numerical model. The model was calibrated and verified against water level variation, temperature, and salinity variations during 2003 and 2001, respectively. Eight sensitivity tests were conducted with different river flow and wind conditions specified in the model. Model results show that salinity intruded further upstream under scenarios with low flow, downriver local wind, and remote-wind-caused water level set-up conditions. In contrast, the responses of salinity stratification to different environmental forcing functions were different in different portions of the estuary. Salinity stratification was enhanced under high flow condition at the lower part of the estuary, under upriver wind near the river mouth, under downriver wind at the upstream to middle portion of the estuary, and under remote-wind-caused water level set-up condition at the majority of the estuary except near the river mouth. Model results also show that across-channel wind tended to reduce salt intrusion and salinity stratification in the PRE through increased vertical mixing.  相似文献   

19.
An examination is made of the circulation in narrow estuaries subject to a predominant tidal forcing. Velocity structures are derived separately for residual flow components associated with (a) river flow, (b) wind stress, (c) a well-mixed longitudinal density gradient and (d) a fully stratified saline wedge. Dimensionless parameters are introduced to indicate the magnitude of each component and these parameters are evaluated for 9 major estuaries, thereby revealing their sensitivity to each component.For a channel of constant breadth and depth, formulae are deduced for the length of saline intrusion, L. Comparisons with observed data show that such formulae may be used with confidence to predict changes in L arising from variations in river flow, tidal range or channel depths.The level of stratification is shown to be related to a product of two parameters, one associated with velocity structure and a second involving the square of the ‘flow ratio’ uu? (i.e. residual velocity/amplitude of the tidal velocity). This relationship provides a simple classification system for estuarine stratification which can be used to indicate the sensitivity of any particular estuary to changing conditions.  相似文献   

20.
引潮力对海洋环流模式的影响   总被引:1,自引:1,他引:1  
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution.Compared with the observation data,the patterns of the tidal amplitudes and phases had been simulated fairly well.The responses of mean circulation,temperature and salinity are further investigated in the global sense.When implementing the tidal forcing,wind-driven circulations are reduced,especially those in coastal regions.It is also found that the upper cell transport of the Atlantic meridional overturning circulation(AMOC) reduces significantly,while its deep cell transport is slightly enhanced from 9×106m3/s to 10×106 m3/s.The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing.The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction,mixing and the changes in mean circulation.The largest changes occur in the coastal regions,where the water is cooled and freshened.In the open ocean,the changes are divided into three layers:cooled and freshened on the surface and below 3 000 m,and warmed and salted in the middle in the open ocean.In the upper two layers,the changes are mainly caused by the enhanced mixing,as warm and salty water sinks and cold and fresh water rises;whereas in the deep layer,the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号