首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present herein a comparison of the magnetic properties of bulk ceramics and thin films of the ferrimagnetic ErCo0.50Mn0.50O3 compound. Epitaxial thin films were deposited onto (1 0 0) SrTiO3 substrates by pulsed-laser ablation while bulk ceramics were prepared by solid state reaction. When cooling under low applied fields, a spin reversal is observed in both thin film and bulk due to the competition between two magnetic sublattices (Co/Mn and Er) coupled by a negative exchange interaction. Original features are observed in the M(H) loops for bulk materials: abrupt jumps at 4 T due to a reorientation of domains, while in the low field region, the increasing and decreasing branches of the magnetization intersect each other. In the thin film, the ordering temperature increased from 69 to 75 K, and the ZFC anomaly (AF transition) became sharper, compared to the bulk specimen. The oxygen content and the microstructure are crucial to observe the intersection of the magnetization branches.  相似文献   

2.
A Ni54Mn25.7Ga20.3 ferromagnetic shape memory alloy thin film has been fabricated by using the RF magnetron-sputtering technique. The structure and magnetic properties of the film were systematically investigated. The results show that the film is in ferromagnetic martensite state at room temperature with the Curie temperature (Tc) of about 370 K. The saturation magnetization (Ms) of the film reaches 45 emu/g at 300 K, which is about 80% as large as that of Ni–Mn–Ga bulk material. The magnetization hysteresis loops significantly depend on temperatures. The residual magnetization (Mr) and the coercive force (Hc) increase with decreasing temperatures. The grains homogeneously distribute in the film. The microstructure of the film consists of martensite plates. The interface between the martensite variants is clear and straight, indicating a good mobility.  相似文献   

3.
Strain in the La0.67Ca0.33MnO3 films has been tuned by varying substrate and film thickness, and its effects on magnetic anisotropy are studied based on the measurements of isothermal magnetization. Measuring the strain in the films by the out-of-plane lattice parameter (c), we found a strong dependence of the magnetic anisotropy constant (Ku) on strain. Ku decreases linearly from ∼−1.1×106 erg/cm3 for c=0.763 nm to 1.2×106 erg/cm3 for c=0.776 nm, corresponding to a change from tensile strain to compressive strain. Positive Ku signifies a uniaxial anisotropy with the easy axis perpendicular to the film plane, while negative Ku demonstrates an anisotropy of the easy plane character. Smaller or larger c leads a decrease or increase in Ku, which indicates the presence of other effects in addition to those associated with strain. Three distinctive processes for the magnetization are observed along the hard magnetic axis of the films on (001)SrTiO3, suggesting a possibility of strain relaxation even in ultra-thin films.  相似文献   

4.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

5.
In this study, La0.5Ca0.5MnO3 (LCMO) films, at the boundary between ferromagnetic metallic and charge-ordered antiferromagnetic insulator according to the bulk phase diagram, were epitaxially grown on (0 0 1) SrTiO3 (STO) and SrLaAlO4 (SLAO) substrates by pulsed laser deposition technique. The films were analyzed by X-ray diffraction, magnetization and magnetoresistance measurements. A considerably higher magnetization was measured for 290-nm-thick film on SLAO substrate compared to the film on STO substrate, although both films have the same chemical composition, thickness and epitaxial orientation. The film on SLAO shows a metal-insulator (MI) transition, which occurs at higher temperatures with increasing applied magnetic field, whereas only insulating behavior was observed for the 290-nm-thick film on STO except for the highest applied magnetic field (7 T). In addition, transport measurements were performed and analyzed by Mott's variable range hopping (VRH) model to correlate the resistivity of the films with the Jahn-Teller strain (εJ−T) in the structure.  相似文献   

6.
Fe2O3 hematite (alpha) nanoparticles suspended in the liquid phase of the liquid crystal 4,4-azoxyanlsole (PAA) are cooled below the freezing temperature (397 K) in a 4000 G dc magnetic field. The in field solidification locks the direction of maximum magnetization of the particles parallel to the direction of the applied dc magnetic field removing the effects of dynamical fluctuations of the nanoparticles on the magnetic properties allowing a study of the intrinsic magnetic properties of the nanoparticles as well as the anisotropic behavior of the ferromagnetic resonance (FMR) signal. Freezing in PAA allows temperature-dependent measurements to be made at much higher temperature than previous measurements. The field position, line width and intensity of the FMR signal as a function of temperature as well as the magnetization show anomalies in the vicinity of 200 K indicative of a magnetic transition, likely the previously observed Morin transition shifted to lower temperature due to the small particle size. Weak ferromagnetism is observed below Tc in contrast to the bulk material where it is antiferromagnetic below Tc. The Raman spectrum above and below 200 K shows no evidence of a change in lattice symmetry associated with the magnetic transition.  相似文献   

7.
W.B. Mi 《Applied Surface Science》2010,256(9):2831-2836
Fe0.5Ge0.5 nanocomposite films with different film thicknesses were fabricated using cosputtering. The films are composed of Ge, Fe and Fe3Ge2, and are ferromagnetic at room temperature. The saturation magnetization and magnetic interaction including dipolar interaction and exchange coupling increase with the increasing film thickness. The electrical conductance mechanism turns from metallic to semiconducting and the saturation Hall resistivity ρxys increases with the decreasing film thickness. At 28 nm, ρxys is ∼137 μΩ cm at 2 K, about 150 times larger than that of pure Fe film (0.9 μΩ cm) and four orders larger than that of bulk Fe. The ρxy-H curves of all the films show the same linearity character in low-field range even though the temperature-independent slope is different at different film thicknesses. At high temperatures, the skew scattering mechanism is dominant. At low temperatures, side-jump effect should be dominant at large resistivity ρxx regime for the thin films, and the skew scattering is dominant at small ρxx regime for the thick films.  相似文献   

8.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

9.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

10.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

11.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

12.
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Padé approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τc is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces Jb, Js and J, respectively. It is found that τc increases with the exchange interactions of surface. The magnetic phase diagrams (τc versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures Tc(l) from the bulk value (Tc(∞)/Tc(l) − 1) can be described by a power law lλ, where λ = 1/υ is the inverse of the correlation length exponent.  相似文献   

13.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

14.
The orientation-dependent dielectric properties of barium stannate titanate (Ba(Sn0.15Ti0.85)O3, BTS) thin films grown on (1 0 0) LaAlO3 single-crystal substrates through sol-gel process were investigated. The nonlinear dielectric properties of the BTS films were measured using an inter-digital capacitor (IDC). The results show that the in-plane dielectric properties of BTS films exhibited a strong sensitivity to orientation. The upward shift of Curie temperature (Tc) of the highly (1 0 0)-oriented BTS thin films is believed to be attributing to a tensile stress along the in-plane direction inside the film. A high tunability of 47.03% was obtained for the highly (1 0 0)-oriented BTS films, which is about three times larger than that of the BTS films with random orientation, measured at a frequency of 1 MHz and an applied electric field of 80 kV/cm. This work clearly reveals the highly promising potential of BTS films for application in tunable microwave devices.  相似文献   

15.
Thin films of (111)-oriented spinel ferrite Al0.5Fe2.5O4 have been prepared by a pulsed-laser deposition (PLD) technique on α-Al2O3 (0001) substrates. The films exhibit cluster-glass behaviors with a spin-freezing temperature, Tg, near or above room temperature. The magnetization was found to increase following light irradiation below Tg, which indicates the photoinduced melting of cluster-glass states. An analysis comparing the dynamic behavior of magnetic response to light irradiation between zero-field-cooled (ZFC) states and field-cooled (FC) states at 10 K under various light intensities, I, revealed that the direct photoexcitation of spins occurs when I≤0.78 mW/mm2, while the thermal heating effect following the light absorption of the samples also contributes to the enhancement of magnetization when I≥1.22 mW/mm2. The magnetization of the films could be controlled by light irradiation even at room temperature. This suggests the possibility of utilizing these films in the development of novel magneto-optical memory devices.  相似文献   

16.
Structural, electrical, and magnetic properties of Ni1−xZnxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures have been investigated thoroughly. The bulk density of the Ni0.8Zn0.2Fe2O4 samples increases as the sintering temperature (Ts) increases from 1200 to 1300 °C and above 1300 °C the bulk density decreases slightly. The Ni0.6Zn0.4Fe2O4 samples show similar behavior of changes to that of Ni0.8Zn0.2Fe2O4 samples, except that the bulk density is found to be the highest at 1350 °C. The DC electrical resistivity, ρ(T)ρ(T), decreases as the temperature increases indicating that the samples have semiconductor-like behavior. As the Zn content increases, the Curie temperature (Tc), resistivity, and the activation energy decrease while the magnetization, initial permeability, and the relative quality factor (Q) increases. A Hopkinson peak is obtained near Tc in the real part of the initial permeability vs. temperature curves. The ferrite with higher permeability has a relatively lower resonance frequency. The initial permeability and magnetization of the samples has been found to correlate with density, average grain sizes. Possible explanation for the observed structural, magnetic, and changes of resistivity behavior with various Zn content are discussed.  相似文献   

17.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

18.
Epitaxial TbMnO3 films have been fabricated on SrTiO3(001) and LaAlO3(001) substrates by pulsed laser deposition (PLD), the structure and surface morphology of the films were characterized by X-ray diffraction with Cu Kα radiation and atomic force microscopy. The electrical transport and magnetic properties of the TbMnO3 films and bulk were examined, the resistivity and the forbidden band width Eg change with epitaxial orientation, semiconductor transport properties are found in the films and bulk, the average of the Eg of the films on SrTiO3 and on LaAlO3 is equal to the Eg of the bulk. The two TMO films have different magnetization mode, the magnetization of the film on SrTiO3 have an analogy to that of TbMnO3 single crystal.  相似文献   

19.
Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni0.5Zn0.5Fe2O4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size (φ∼70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ∼93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g<Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length (Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model (k/μo∼50 A m2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ∼93 nm.  相似文献   

20.
The Ag/Tl2Ba2Ca2Cu3O10/CdSe heterostructure was fabricated at room temperature by soft electrochemical processing technique for the first time. The formation of the heterostructure with non-diffusive interfaces was confirmed by X-ray diffraction. The crystallite sizes determined for Tl-2223 and CdSe films were 33 nm and 25 nm, respectively. The Tl2Ba2Ca2Cu3O10 film electrodeposited onto Ag-substrate has shown the superconducting transition temperature Tc at 116.5 K and Jc = 2.1 × 103 A/cm2. These values were found to improve after the deposition of CdSe onto Ag/Tl-2223 films. The effect of red He-Ne laser irradiation on the superconducting properties of heterostructure are studied and discussed at length in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号