首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用自适应直角网格计算三维增升装置绕流   总被引:2,自引:0,他引:2  
针对三维增升装置绕流,对存在剪刀叉的不连续外形,基于自适应直角网格,提出并介绍了分区和面搭接技术,采用变长宽比网格,进行了直角网格生成和流场Euler方程数值计算. 根据几何外形的特点,在直角网格生成过程中,以外形不连续面作为分区边界,对初始``根'网格实施分区处理,降低了整个网格的生成难度. 通过基于外形的自适应网格加密,详细描述了剪刀叉外形和缝道,提高了网格质量. 在分区边界面上,基于面搭接技术,构造重叠面积切割算法,实现边界两侧网格间的流场信息传递,保证流场计算中的通量守恒. 采用中心有限体积方法,结合双时间推进算法,完成了两段机翼、带增升襟翼翼身组合体绕流流场的Euler方程数值模拟,对计算结果与实验数据进行了对比,验证了所提方法、算法的合理性和实用性.  相似文献   

2.
拼接网格技术在复杂流场数值模拟中的应用研究   总被引:1,自引:0,他引:1  
采用分区拼接网格技术,对 DLR-F6 机翼/机身胜架/短舱复杂组合体进行拼接网格分布.并采用 Menter SST 湍流模型,通过求解 Navier-Stokes 方程,对该组合体外流场以及发动机短舱内流场进行了一体化数值模拟,与相应风洞实验数据及分区搭接网格计算结果进行了比较与分析,验证了拼接网格技术的高效性与可靠性.同时通过分析对比不同插值方法的计算结果,研究了插值方法对拼接精度的影响;通过分析对比几组不同的拼接网格算例,总结出了 3 个拼接网格的基本实施准则.证明了拼接网格能够大幅度减小计算网格数目,可以更加灵活地分布网格节点,这样既可以缩短计算时间,又可以降低对内存的需求,提高了计算效率;同时无论整体的力系数,还是局部的压力分布流场细节都能够满足工程精度.  相似文献   

3.
针对结构嵌套网格计算,提出一种实用的初始洞面构造方法,成功应用于自动化嵌套网格生成过程。首先采用封闭物面作为嵌套网格"挖洞"的初始洞边界,然后通过分别给定期望的壁面距离及初始洞间距比例因子的方法进行优化,得到真正的挖洞曲面。通过对NACA4412单段翼型、30P30N三段高升力翼型等算例计算,结果表明:本文提出的方法能有效解决嵌套网格计算中初始洞边界自动构造问题,并能有效避免在近壁面区域进行流场传值,在不需要额外采用洞面优化技术的情况下解决壁面狭缝网格重叠问题,获得更优的嵌套网格流场计算结果。结合本文方法对传统嵌套网格方法进行改进,可为自动化嵌套网格生成提供有效的途径。  相似文献   

4.
使用雷诺平均NS方程、采用Johnson-King紊流模型、嵌套网格和有限体积法研究大迎角下的多缝道的多段翼型绕流。利用嵌合体技术对组合每一部分生成高质量并适于高效求解的贴体网格;将J-K模型发展应用于计算缝道流动以及具有边界层、尾迹流交汇的复杂流动。以具有17%相对厚度的GAW-1翼型带30%襟翼翼型及一个三段翼型为例进行了计算,计算结果与实验结果吻合很好,证实该方法可以较好地预示多段翼型上的粘性绕流、多缝道流动与最大升力。  相似文献   

5.
周帅  肖周芳  付琳  汪丁顺 《力学学报》2022,54(6):1732-1740
网格自适应技术和高阶精度数值方法是提升计算流体力学复杂问题适应能力的有效技术途径. 将这两项技术结合需要解决一系列技术难题, 其中之一是高阶精度流场插值. 针对高阶精度自适应流动计算, 提出一类高精度流场插值方法, 实现将前一迭代步网格中流场数值解插值到当前迭代步网格中, 以延续前一迭代步中的计算状态. 为实现流场插值过程中物理量守恒, 该方法先计算新旧网格的重叠区域, 然后将物理量从重叠区域的旧网格中转移到新网格中. 为满足高阶精度要求, 先采用k-exact最小二乘方法对旧网格上的数值解进行重构, 获得描述物理量分布的高阶多项式, 随后采用高阶精度高斯数值积分实现物理量精确地转移到新网格单元上. 最后, 通过一个具有精确解的数值算例和一个高阶精度自适应流动计算算例验证了本文算法的有效性. 第一个算例结果表明当网格规模固定不变时, 插值精度阶数越高, 插值误差越小; 第二个算例显示本文方法可以有效缩短高精度自适应流动计算的迭代收敛时间.   相似文献   

6.
针对一种充气前缘(inflatable leading edge, ILE)增升技术,建立了其充气结构与流场耦合作用的运动方程. 将方程写成状态空间形式,采用时域推进方法求解. 对使用了变前缘增升技术的NACA63-212翼型进行了充气结构静变形的数值计算,结果表明充气结构的刚度对翼型的气动特性有明显影响. 与原翼型相比,在不考虑充气结构变形时, 该增升技术大约能使翼型的失速迎角增加30{\%},最大升力系数增加22{\%};考虑结构变形后增升效果有所降低. 刚度较低的薄膜在前缘吸力峰的作用下会隆起形成鼓包,容易引起流动分离.   相似文献   

7.
针对一种充气前缘(inflatable leading edge, ILE)增升技术,建立了其充气结构与流场耦合作用的运动方程. 将方程写成状态空间形式, 采用时域推进方法求解. 对使用了变前缘增升技术的NACA 63-212翼型进行了充气结构静变形的数值计算,结果表明充气结构的刚度对翼型的气动特性 有明显影响. 与原翼型相比,在不考虑充气结构变形时, 该增升技术大约能使翼型的失速迎角 增加30{\%},最大升力系数增加22{\%};考虑结构变形后增升效果有所降低. 刚度较低的薄 膜在前缘吸力峰的作用下会隆起形成鼓包,容易引起流动分离.  相似文献   

8.
王年华  鲁鹏  常兴华  张来平  邓小刚 《力学学报》2021,53(10):2682-2691
网格自动化生成和自适应是制约计算流体力学发展的瓶颈问题之一, 网格生成质量、效率、灵活性、自动化程度和鲁棒性是非结构网格生成的关键问题. 在非结构网格生成中, 网格空间尺度分布控制至关重要, 直接影响网格生成质量、效率和求解精度. 采用传统的背景网格法进行空间尺度分布控制需要在背景网格上求解微分方程得到背景网格上的尺度分布, 再将网格尺度从背景网格插值到真实空间点, 过程十分繁琐且耗时. 本文从效率和自动化角度提出两种网格尺度控制方法, 首先发展了基于径向基函数(RBF)插值的网格尺度控制方法, 通过贪婪算法实现边界参考点序列的精简, 提高了RBF插值的效率. 同时, 还采用人工神经网络进行网格尺度控制, 初步引入相对壁面距离和相对网格尺度作为神经网络输入输出参数, 建立人工神经网络训练模型, 采用商业软件生成二维圆柱和二维翼型非结构三角形网格作为训练样本, 通过训练和学习建立起相对壁面距离和相对网格尺度的神经网络关系. 进一步实现了二维圆柱、不同的二维翼型的尺度预测, RBF方法和神经网络方法的效率与传统背景网格法相比提高了5~10倍, 有助于提高网格生成的效率. 最后, 将方法推广应用于各向异性混合网格尺度预测, 得到的网格质量满足要求.   相似文献   

9.
焦予秦  陆岩 《应用力学学报》2015,(2):215-220,350-351
基于雷诺平均Navier-Stokes粘性流动方程,采用数值模拟方法,分析了吹气控制对多段翼型气动性能的影响,阐述了吹气改善多段翼型流动的机理。采用有限体积法对雷诺平均Navier-Stokes方程进行空间离散,时间方向推进采用二阶迎风格式,湍流模型采用SST k-ω模型。结果表明:在多段翼型基础上采取吹气控制可以获得很好的气动增升效果,三段翼型的最大升力系数可达4.98;吹气可改善多段翼型表面流动,减小其流动分离,增加升力;在同样的吹气口几何参数条件下,在一定范围内增大吹气动量系数可以提高多段翼型的升力系数;在多段翼型主翼后段和襟翼同时施加吹气流动控制可以获得更好的效果,升力系数比基本三段翼型(基本构型A)增加30.05%。  相似文献   

10.
翼型大攻角状态下表面吸气驻涡增升的数值模拟实验   总被引:1,自引:0,他引:1  
李锋  汪翼云  崔尔杰 《力学学报》1993,25(5):632-637
用数值模拟方法给出了翼型大攻角状态表面吸气后绕翼型流动的某些新现象并对流场的特性进行了机理性研究,其中包括吸气对翼型背风面分离涡的驻涡增升作用;吸气孔位置对流场的影响;不同吸气强度以及间歇式吸气的增升效应。数值模拟的出发方程为N-S方程,差分格式为Beam-Warming格式。数值实验表明:(1)吸气可有效地提高翼型大攻角状态下的升力;(2)在一定吸气强度下吸气可使翼型背风面上涡的非定常脱落现象消失从而起到驻涡作用;(3)吸气孔位置在翼面的中部附近增升效果较好;(4)在一定范围内吸气强度越强其升力越高;(5)间歇式吸气也可提高平均升力,但引起升力的波动。  相似文献   

11.
蔡政刚  潘君华  倪明玖 《力学学报》2022,54(7):1909-1920
浸没边界法是处理颗粒两相流中运动边界问题的一种常用数值模拟方法. 当研究的物理问题的无量纲参数满足一定要求时, 该流场结构呈现轴对称状态. 为此本文提出了一种基于2D笛卡尔网格和柱坐标系的轴对称浸没边界法. 该算法采用有限体积法(FVM)对动量方程进行空间离散, 并通过阶梯状锐利界面替代真实的固体浸没边界来封闭控制方程. 为了提高计算效率, 本文采用自适应网格加密技术提高浸没边界附近网格分辨率. 由于柱坐标系的使用, 使得动量方程中的黏性项产生多余的源项, 我们对其作隐式处理. 此外, 在对小球匀速近壁运动进行直接数值模拟时, 由于球壁间隙很小, 间隙内的压力变化比较剧烈. 因此想要精确地解析流场需要很高的网格分辨率. 此时, 需要在一个时间步内多次实施投影步来保证计算的稳定性. 而在小球自由碰壁运动中, 我们通过引入一个润滑力模型使得低网格分辨率下也能模拟小球近壁处的运动. 最后通过小球和圆盘绕流、Stokes流小球近壁运动以及小球自由下落碰壁弹跳算例验证本算法对于轴对称流的静边界和动边界问题均是适用和准确的.   相似文献   

12.
High-Performance Computing (HPC) systems and Computational Fluid Dynamics (CFD) have made significant progress in recent years; however, as the basis of the large-scale parallel computing, the massive grid generation of billions of cells has become a bottleneck problem. In this study, a parallel grid generation technique is proposed to generate large-scale mixed grids with arbitrary cell types and scales. The basic idea of our method is analogous to the global mesh refinement technique. An initial coarse grid with arbitrary cell types is regarded as a background mesh which is partitioned into subzones, and subzones are assigned onto different CPU cores. After the cells and faces in each subzone are split, the inserted new points of the solid wall are projected onto the original CAD entities to preserve the geometry accurately. Finally, the tangled cells caused by the projection in the boundary layer are untangled by a local Radial Basis Function mesh deformation technique. Furthermore, a parallel partition approach and an efficient wall distance computing technique for massive grids are developed also to shorten the preprocessing time. The tests show that the preprocessing efficiency has been increased by two or three orders compared with traditional methods. Billions of grids are generated for the AIAA JSM high-lift model and the Chinese CHN-T1 transport model to test the ability of the parallel grid generation technique. The maximum scale up to 19 billion mixed elements is generated using 16 384 CPU cores in parallel, and the mesh quality is acceptable for CFD simulations.  相似文献   

13.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Three surface integral approaches of the acoustic analogies are studied to predict the noise from three concep- tual configurations of three-dimensional high-lift low-noise wings. The approaches refer to the Kirchhoff method, the Ffowcs Williams and Hawkings (FW-H) method of the permeable integral surface and the Curle method that is known as a special case of the FW-H method. The first two approaches are used to compute the noise generated by the core flow region where the energetic structures exist. The last approach is adopted to predict the noise specially from the pressure perturbation on the wall. A new way to con- struct the integral surface that encloses the core region is proposed for the first two methods. Considering the local properties of the flow around the complex object-the actual wing with high-lift devices-the integral surface based on the vorticity is constructed to follow the flow structures. The surface location is discussed for the Kirchhoff method and the FW-H method because a common surface is used for them. The noise from the core flow region is studied on the basis of the dependent integral quantities, which are indicated by the Kirchhoff formulation and by the FW-H formulation. The role of each wall component on noise contribution is analyzed using the Curle formulation. Effects of the volume integral terms of Lighthill's stress tensors on the noise pre-diction are then evaluated by comparing the results of the Curle method with the other two methods.  相似文献   

15.
16.
The multiphase heat transfer could be enhanced by creating thin liquid film on the wall. The phase separation concept is called due to the separated flow paths of liquid and gas over the tube cross section to yield thin liquid film. Our proposed heat transfer tube consists of an annular region close to the wall and a core region, interfaced by a suspending mesh cylinder in the tube. The heat transfer tube is a multiscale system with micron scale of mesh pores, miniature scale of annular region and macroscale of tube diameter and length. Great effort has been made to link from micron scale to macroscale. The Volume of Fluid (VOF) method simulates air/water two-phase flow for vertical upflow. The three-dimensional system was successfully converted to a two-dimensional one by using three equivalent criteria for mesh pores. The non-uniform base grid generation and dynamic grid adaption method capture the bubble interface. The numerical results successfully reproduce our experimental results. The numerical findings identify the following mechanisms for the enhanced heat transfer: (a) counter-current flow exists with upward flow in the annular region and downward flow in the core region; (b) void fractions are exact zero in the core region and higher in the annular region; (c) the liquid film thicknesses are decreased to 1/6–1/3 of those in the bare tube section; (d) the gas–liquid mixture travels much faster in the annular region than in the bare tube; (e) three-levels of liquid circulation exists: meter-scale bulk liquid circulation, moderate-scale liquid circulation around a single-elongated-ring-slug-bubble, and microliquid circulation following the ring-slug-bubble tails. These liquid circulations promote the fluid mixing over the whole tube length and within the radial direction. The modulated parameters of void fractions, velocities and liquid film thicknesses in the annular region and three-levels of liquid circulation are greatly beneficial for the multiphase heat transfer enhancement.  相似文献   

17.
This paper describes the use of overlapping grids for the calculation of flow around single and multipleparticle configurations at the micro scale. The basic equations for calculation are those for conservation of mass and momentum which are solved using a common Finite-Volume formulation. The hydrodynamic particle-particle and particle-wall interaction can be calculated by using an overlapping or Chimera grid scheme. With the grid structuring procedure it is possible to use simple and structured grids around the particles and the overall main grid geometry. The particle grids are lapped over the main grid such that they can move independently after each time step without remeshing the whole geometry. The paper gives results for the validation of the code developed for general test cases, for a rotating ellipsoid in simple shear flow, the flow around particles attached to a wall, the motion of a particle in the vicinity of a wall and some results for the flow through a packed bed configuration.  相似文献   

18.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号