首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Hierarchical MoS2xSe2(1?x) nanotubes assembled from several‐layered nanosheets featuring tunable chalcogen compositions, expanded interlayer spacing and carbon modification, are synthesized for enhanced electrocatalytic hydrogen evolution reaction (HER). The chalcogen compositions of the MoS2xSe2(1?x) nanotubes are controllable by adjusting the selenization temperature and duration while the expanded (002) interlayer spacing varies from 0.98 to 0.68 nm. It is found that the MoS2xSe2(1?x) (x = 0.54) nanotubes with expanded interlayer spacing of 0.98 nm exhibit the highest electrocatalytic HER activity with a low onset potential of 101 mV and a Tafel slope of 55 mV dec?1. The improved electrocatalytic performance is attributed to the chalcogen composition tuning and the interlayer distance expansion to achieve benefitting hydrogen adsorption energy. The present work suggests a potential way to design advanced HER electrocatalysts through modulating their compositions and interlayer distances.  相似文献   

2.
Nanostructured transition metal dichalcogenides (TMDs) are proven to be efficient and robust earth‐abundant electrocatalysts to potentially replace precious platinum‐based catalysts for the hydrogen evolution reaction (HER). However, the catalytic efficiency of reported TMD catalysts is still limited by their low‐density active sites, low conductivity, and/or uncleaned surface. Herein, a general and facile method is reported for high‐yield, large‐scale production of water‐dispersed, ultrasmall‐sized, high‐percentage 1T‐phase, single‐layer TMD nanodots with high‐density active edge sites and clean surface, including MoS2, WS2, MoSe2, Mo0.5W0.5S2, and MoSSe, which exhibit much enhanced electrochemical HER performances as compared to their corresponding nanosheets. Impressively, the obtained MoSSe nanodots achieve a low overpotential of ?140 mV at current density of 10 mA cm?2, a Tafel slope of 40 mV dec?1, and excellent long‐term durability. The experimental and theoretical results suggest that the excellent catalytic activity of MoSSe nanodots is attributed to the high‐density active edge sites, high‐percentage metallic 1T phase, alloying effect and basal‐plane Se‐vacancy. This work provides a universal and effective way toward the synthesis of TMD nanostructures with abundant active sites for electrocatalysis, which can also be used for other applications such as batteries, sensors, and bioimaging.  相似文献   

3.
4.
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures.  相似文献   

5.
The rational design of Earth abundant electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of carbon neutral energy carrier. Owing to their fascinating chemical and physical properties, transition metal dichalcogenides (TMDs) are widely studied for this purpose. Of particular note is that doping by foreign atom can bring the advent of electronic perturbation, which affects the intrinsic catalytic property. Hence, through doping, the catalytic activity of such materials could be boosted. A rational synthesis approach that enables phosphorous atom to be doped into WS2 without inducing phase impurity to form WS2(1? x )P2 x nanoribbon (NRs) is herein reported. It is found that the WS2(1? x )P2 x NRs exhibit considerably enhanced HER performance, requiring only ?98 mV versus reversible hydrogen electrode to achieve a current density of ?10 mA cm?2. Such a high performance can be attributed to the ease of H‐atom adsorption and desorption due to intrinsically tuned WS2, and partial formation of NRs, a morphology wherein the exposure of active edges is more pronounced. This finding can provide a fertile ground for subsequent works aiming at tuning intrinsic catalytic activity of TMDs.  相似文献   

6.
Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble‐metal‐based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot‐injection method, the heating‐up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD‐based composites as catalysts is discussed.  相似文献   

7.
A simple one‐pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer‐expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm?2, a small Tafel slope of 36 mV dec?1, and long‐term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (?GH) from density functional theory calculations. This work opens up a new door for developing transition‐metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.  相似文献   

8.
9.
10.
In the hydrogen evolution reaction (HER), energy‐level matching is a prerequisite for excellent electrocatalytic activity. Conventional strategies such as chemical doping and the incorporation of defects underscore the complicated process of controlling the doping species and the defect concentration, which obstructs the understanding of the function of band structure in HER catalysis. Accordingly, 2H‐MoS2 and 1T‐MoS2 are used to create electrocatalytic nanodevices to address the function of band structure in HER catalysis. Interestingly, it is found that the 2H‐MoS2 with modulated Fermi level under the application of a vertical electric field exhibits excellent electrocatalytic activity (as evidenced by an overpotential of 74 mV at 10 mA cm?2 and a Tafel slope of 99 mV per decade), which is superior to 1T‐MoS2. This unexpected excellent HER performance is ascribed to the fact that electrons are injected into the conduction band under the condition of back‐gate voltage, which leads to the increased Fermi level of 2H‐MoS2 and a shorter Debye screen length. Hence, the required energy to drive electrons from the electrocatalyst surface to reactant will decrease, which activates the 2H‐MoS2 thermodynamically.  相似文献   

11.
Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD‐based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2. However, experimentally it requires systematic approach to form CoxW(1?x)S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary CoxW(1?x)S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm?2 and shows Tafel slope of 67 mV dec?1. Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials.  相似文献   

12.
13.
14.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm?2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.  相似文献   

15.
16.
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec−1 and a low overpotential of 24.7 mV at 10 mA cm−2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.  相似文献   

17.
Optical emission efficiency of two-dimensional layered transition metal dichalcogenides (TMDs) is one of the most important parameters affecting their optoelectronic performance.The optimization of the growth parameters by chemical vapor deposition (CVD) to achieve optoelectronic-grade quality TMDs is,therefore,highly desirable.Here,we present a systematic photoluminescence (PL) spectroscopic approach to assess the intrinsic optical and crystalline quality of CVD grown MoS2 (CVD MoS2).We propose the use of the intensity ratio between the PL measured in air and vacuum as an effective way to monitor the intrinsic optical quality of CVD MoS2.Low-temperature PL measurements are also used to evaluate the structural defects in MoS2,via defect-associated bound exciton emission,which well correlates with the field-effect carrier mobility of MoS2 grown at different temperatures.This work therefore provides a sensitive,noninvasive method to characterize the optical properties of TMDs,allowing the tuning of the growth parameters for the development of optoelectronic devices.  相似文献   

18.
Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley–Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2/MoS2 NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.  相似文献   

19.
20.
Fabrication of hierarchical nanosheet arrays of 1T phase of transition‐metal dichalcogenides is indeed a critical task, but it holds immense potential for energy storage. A single‐step strategy is employed for the fabrication of stable 1T‐MnxMo1–xS2–ySey and MoFe2S4–zSez hierarchical nanosheet arrays on carbon cloth as positive and negative electrodes, respectively. The flexible asymmetric supercapacitor constructed with these two electrodes exhibits an excellent electrochemical performance (energy density of ≈69 Wh kg?1 at a power density of 0.985 kW kg?1) with ultralong cyclic stability of ≈83.5% capacity retention, after 10 000 consecutive cycles. Co‐doping of the metal and nonmetal boosts the charge storage ability of the transition‐metal chalcogenides following enrichment in the metallic 1T phase, improvement in the surface area, and expansion in the interlayer spacing in tandem, which is the key focus of the present study. This study explicitly demonstrates the exponential enhancement of specific capacity of MoS2 following intercalation and doping of Mn and Se, and Fe2S3 following doping of Mo and Se could be an ideal direction for the fabrication of novel energy‐storage materials with high‐energy storage ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号