首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
An oligochaete reactor linked to an integrated oxidation ditch with vertical cycle (IODVC) was used to investigate the sludge reduction potential induced by worms. The presence of Tubificidae was observed in the worm reactor throughout the operational period after its inoculation, and Tubificidae was occasionally found in the IODVC. Free-swimming worms, Aeolosoma hemprichi, Nais elinguis, and Aulophorus furcatus, were found in both the IODVC and the worm reactor, but A. hemprichi was dominant. A. hemprichi reached its maximum, 322 and 339 Aeolosoma/mL mixed liquor on day 49 in the worm reactor and the IODVC, respectively. The presence of oligochaetes or the integration of worm reactor with the IODVC had little effect on sludge yield, but the worm growth was helpful for improving sludge settling characteristics. The average sludge yield and sludge volume index (SVI) in the IODVC were 0.33 kgSS/kgCOD(removed) and 78 mL/g, respectively. The worm presence had little impact on effluent quality of the IODVC, but it caused phosphorus release into the effluent. The average COD, NH(4)(+)-N, and SS concentrations in the effluent of the IODVC were 49.06, 12.82, and 58.25 mg/L, respectively. No total nitrogen (TN) release into the effluent of the IODVC occurred.  相似文献   

2.
Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (q(max)) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).  相似文献   

3.
Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium.The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.  相似文献   

4.
The removal efficiency of sequencing batch reactor (SBR) system with synthetic industrial estate wastewater (SIEWW) containing Ni2+ or Pb2+ was increased with the increase of mixed liquor suspended solids (MLSS). But, the sludge volume index (SVI) of the system was increased up to higher than 100 mL/g under MLSS of up to 4000 mg/L. Also, the effluent NO3 was decreased with the increase of MLSS. The heavy metals (Ni2+ or Pb2+), BOD5, COD and TKN removal efficiencies of SBR system with SIEWW containing 5 mg/L heavy metal (Ni2+ or Pb2+) under MLSS of 3000 mg/L were 83–85%, 96–97%, 95–96% and 83–94%, respectively. The increase of heavy metal (Ni2+ or Pb2+) concentrations of SIEWW from 5 to 50 mg/L were not significantly effected to both COD and BOD5 removal efficiencies (they were reduced by only 4–5%), but they were strongly effected to both TKN and heavy metals removal efficiencies (they were reduced by 15 and 20–30%, respectively). Both Ni2+ and Pb2+ could repress the growth of both nitrification and denitrification bacteria. And Ni2+ was more effective than Pb2+ to reduce the heavy metals removal efficiency. The SBR system could be applied to treat the industrial estate wastewater (IEWW) containing both Pb2+ and Ni2+ even the heavy metals concentrations was up to 5 mg/L, but the removal efficiency was quite low and excess bio-sludge did not produce. However, the system efficiency could be increased with the increase of BOD5 concentration of the wastewater. The Pb2+, Ni2+, COD, BOD5 and TKN removal efficiencies of the system with IEWW containing 500 mg/L BOD5, 5 mg/L Ni2+ and 5 mg/L Pb2+ under HRT of 3 days were 85.68 ± 0.31%, 87.03 ± 0.21%, 86.0 ± 0.5%, 94.04 ± 0.4% and 90.5 ± 0.9%, respectively. And the effluent SRT, SS and SVI of the system were 44.7 ± 0.6 days, 150 ± 6 mg/L and 100 mL/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号