首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用大分子表面处理剂LMPB-g-KH570对纳米Si_3N_4表面进行修饰。利用共混技术制备了纳米Si_3N_4/ACM复合材料。利用RPA-8000、SEM、TEM等测试技术,对纳米复合材料的微观结构和性能进行了分析和评价。结果表明,大分子表面改性剂能有效改善复合材料的微观界面结构,促进纳米Si_3N_4在橡胶基体中的有效分散,橡胶硫化性能得到改善,力学性能得到提高。添加2.0份改性纳米Si_3N_4/ACM复合材料,胶料正硫化时间减少38 s,拉伸强度提高24.8%,撕裂强度提高3.39%。  相似文献   

2.
工程陶瓷已广泛应用于工业领域,而其较高的脆性一直是推广受限的主要因素之一。基于此,本研究旨在协同提高工程结构陶瓷的强度和韧性。以微米级Si3N4粉体和高纯度镍丝为原料,借鉴仿生制备思路,利用热压烧结的方式制备仿木质年轮状Si3N4/Ni复合材料,研究了Si3N4/Ni复合材料中Si3N4与Ni丝的界面结合状态,测试了复合材料的物理力学性能。结果表明,复合材料中Si3N4基体与Ni之间界面结合良好,仿木质年轮的材料结构有助于陶瓷材料的强韧化,复合材料的弯曲强度达(989±87) MPa,断裂韧性达(8.12±0.8) MPa·m1/2,较单相Si3N4陶瓷的物理力学性能有较好的提升。  相似文献   

3.
为了提高Si3N4陶瓷的烧结致密度,采用振荡压力烧结工艺分别在1 745和1 775℃制备了Si3N4陶瓷,主要研究了Si3N4粉的粒度(平均粒径分别为0.4、2.0、2.3μm)对Si3N4陶瓷的显微结构和性能的影响。结果显示:1)在两种温度的振荡压力烧结工艺下,由三种不同粒度的Si3N4粉制备的Si3N4陶瓷的相对密度都很大,为99.65%~99.86%,彼此相差很小。2)由平均粒径为0.2μm的Si3N4粉在1 745℃烧结制备的试样的微观结构最均匀,其β-Si3N4晶粒平均长径比、抗弯强度和维氏硬度均最大,分别达到5.0、(1 364±65) MPa和(15.72±0.8) GPa;由平均粒径为2.3μm的Si3  相似文献   

4.
通过对纳米Si3N4表面改性和对MWCNTs表面的酸化处理,使用溶剂热法制备出Si3N4/MWCNTs纳米复合材料。通过SEM、XRD、FT-IR等研究了复合材料的结构以及形貌,并用矢量网络分析仪测量其电磁参数。结果表明:制备的纳米复合材料在样品厚度为1.5 mm有效吸频带的宽度最宽,可以达到5.38 GHz。在样品厚度为4.0 mm时,在4.24 GHz处反射损耗RL值可以达到-41.73 d B,有效带宽为1.81 GHz。  相似文献   

5.
采用羟基化结合硅烷偶联剂(KH560)对氮化硅(Si3N4)粉体进行表面功能化改性,配制出高固含量、高固化深度的Si3N4膏料,并基于立体光固化(SL)工艺制备了高强度的Si3N4复杂结构件。结果表明:Si3N4表面的KH560改善了粉体与树脂的相容性,降低了Si3N4膏料的粘度;同时,KH560的环氧基团(—CH(O)CH2)与环氧树脂(EA)通过化学键等方式相结合,形成了EA核壳结构,降低了树脂与陶瓷颗粒之间的折射率差,从而提高了Si3N4膏料的固化深度。表面羟基化处理后Si3N4表面吸附了更多的KH560,从而进一步降低了Si3N4膏料的粘度,提高了Si3N4膏料的固化深度。最终,用羟基化和KH560改性后的Si3N4粉体配制出的Si3N4膏料固含量达到50%(体积分数),固化深度达到64 μm。烧结后Si3N4试样致密度为83%,断裂韧性为(4.38±0.45) MPa·m1/2,抗弯强度达到(407.95±10.50) MPa。  相似文献   

6.
通过硅烷偶联剂A-1120对立方氮化硅(γ-Si3N4)粒子进行表面初步接枝,再以甲基丙烯酸甲酯(MMA)单体对经过初步接枝的γ-Si3N4粒子进行表面二次接枝,实现了对该粒子的表面多步接枝改性。将改性后粒子加入氰酸酯树脂(CE)中,制备了CE/γ-Si3N4复合材料,考察了CE/γ-Si3N4复合体系的黏度变化,表征了复合材料的力学性能、热稳定性和介电性能。结果表明,经表面多步接枝后γ-Si3N4粒子的加入,使复合材料的综合性能得到了改善,一方面其力学性能、热稳定性、介电性能较纯CE固化物得以提高,另一方面,复合体系的黏度较低,更有利于复合材料固化工艺的优化。当经过两次表面接枝改性的γ-Si3N4 (记作SN3)粒子用量达到CE单体质量5%时,复合材料的冲击强度由纯CE固化物的8.42 kJ/m2提高到...  相似文献   

7.
在CeO2磨料质量分数为0.1%,抛光液pH为10的条件下,研究了非离子表面活性剂聚乙二醇(PEG-600)对浅沟槽隔离(STI)化学机械抛光(CMP)过程中SiO2和Si3N4去除速率的影响。结果表明,PEG-600的加入可以明显减小Si3N4的去除速率,但对SiO2去除速率的影响较小。当PEG-600质量分数为0.2%时,SiO2和Si3N4的去除速率之比为31.04,抛光后SiO2和Si3N4的表面粗糙度(Sq)分别降到0.416 nm和0.387 nm。  相似文献   

8.
为了增韧Si3N4基陶瓷材料,以钨(W)作为第二相材料,Y2O3-Al2O3作为烧结助剂,采用气压烧结法制备了W/Si3N4复合陶瓷材料。研究了W含量对W/Si3N4复合陶瓷材料致密性、力学性能以及结构的影响。结果表明:在W含量小于5%(质量分数)时,样品致密度均达97%以上;在W含量为5%(质量分数)时,获得的W/Si3N4复合陶瓷材料综合性能最佳,弯曲强度、硬度和断裂韧性分别为(670.28±40.00) MPa、(16.42±0.22) GPa和(8.04±0.16) MPa·m1/2,相比于未添加金属W的Si3N4陶瓷材料分别提高了38.08%、13.08%和44.34%;通过分析W/Si3N4复合陶瓷材料样品抛光面和压痕裂纹的微观结构,发现W的引入能促使裂纹在扩展路径上更易发生偏转、分叉等增韧机制,消耗裂纹扩展能量,从而改善Si3N4陶瓷的断裂韧性。  相似文献   

9.
近年来,随着柔性电子的快速发展,制造柔性、微型、大面积和低成本的储能器件得到了极大的关注。以六水硝酸镍/钴为原料、硫脲为硫化剂、引入热解g-C3N4,通过一步溶剂热制备Ni Co2S4/g-C3N4纳米复合材料。采用掩膜版将调配的Ni Co2S4/g-C3N4油墨印刷在柔性聚对苯二甲酸乙二醇酯基底形成叉指结构电极,继而涂覆凝胶电解质组装成柔性叉指型超级电容器。结构和电化学性能研究表明:Ni Co2S4纳米晶分布生长在g-C3N4纳米片层表面,引入的g-C3N4起到增强NiCo2S4充放电过程中的电荷传输及容纳其体积膨胀的作用,复合材料电极在10 m A/cm2的电流密度下面积...  相似文献   

10.
简述了g-C3N4材料的结构和特性,综述了光催化废水处理的g-C3N4基纳米复合材料以及g-C3N4复合可见光半导体电极及光电催化应用,提出了g-C3N4基纳米复合材料在废水处理应用中的可行策略。  相似文献   

11.
现有水基、油基及其他无水合成类液压传动介质存在高温稳定性差、温-黏变化大等问题。In-Bi-Sn合金熔点低、流动性好、高温性质稳定,是极端高温液压传动介质的理想基础液。本文采用两步法制备体积分数为0、5%、10%、20%、30%的In-Bi-Sn基Si3N4/GNFs混合纳米流体。利用TEM、SEM+EDS、热重分析等手段表征样品形貌、分散性和热稳定性,通过高温旋转流变仪和摩擦磨损试验机研究样品的流变性和润滑性,对比分析样品与现有高温液压介质在热稳定性、流变性、润滑性上的性能差异。结果表明:Si3N4嵌于GNFs片层之间,以团聚体形式分散于In-Bi-Sn基质,10%样品中的混合纳米颗粒团聚体尺寸小于20%样品;样品黏度随混合纳米颗粒体积分数增加而增大,液态静置时间和相变次数对<30%样品黏度的影响不明显;受纳米颗粒布朗运动影响,分散相体积分数越高,样品的温-黏变化越显著;因剪切改变了纳米颗粒团聚体的粒度,20%样品显示出明显的剪切致稀特征;添加Si3N4  相似文献   

12.
以三聚氰胺和氯化铵为前驱体通过热共聚合法制备出多孔g-C3N4纳米片,原位聚合法制备出一维纳米纤维PANI与多孔g-C3N4纳米片(PANI/g-C3N4)复合材料。一维纳米纤维PANI具有优异电荷传输性能和良好的可见光响应,可以弥补g-C3N4光生电子对快速复合和可见光响应不足的缺点。多孔g-C3N4纳米片可以提供更多反应活性位点,同时还可以缩短光生电荷从材料内部到表面的传输距离,抑制光生载流子复合,从而提高材料光催化活性。5PANI/g-C3N4在180 min罗丹明B去除率达83%,经过3次循环后,对罗丹明B去除率仍保持83%,显现出优异光催化活性和稳定性。  相似文献   

13.
张诚  张光磊  郝宁  于刚  秦国强 《硅酸盐通报》2022,41(12):4425-4431
α-Si3N4粉为原料,MgO-La2O3-Lu2O3为三元复合烧结助剂,采用气压烧结工艺制备Si3N4陶瓷条,研究烧结助剂及添加β-Si3N4增强相对Si3N4陶瓷微观结构及力学性能的影响。结果表明,三元复合烧结助剂促进了烧结的致密化,提高了材料的力学性能,在最高烧结温度1 750 ℃、复合烧结助剂添加量8%(质量分数)时,得到密度为3.172 8 g/cm3、维氏硬度达到15.85 GPa、断裂韧性和抗弯强度分别为9.69 MPa·m1/2和1 029 MPa的冰刀用Si3N4陶瓷。添加β-Si3N4材料的断裂韧性得到提高,最高达到10.33 MPa·m1/2。Si3N4陶瓷本身的高硬度与加入的稀土氧化物使得所制备冰刀的硬度与润滑性能得到提高,表面性能优良。  相似文献   

14.
传统的静电纺丝法使用单一的毛细管状喷头喷丝,通常用于制备实心且表面光滑单一组分的纳米纤维,无法得到具有多种功能性结构的复合材料,应用范围较窄。以酞酸丁酯和尿素为原料,采用同轴静电纺丝法成功制备了TiO2/g-C3N4复合材料,并用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、紫外可见漫反射光谱(UV-vis DRS)、场发射扫描电子显微镜(SEM)和Brunauer-Emmett-Teller (BET)分析对样品进行了表征,通过光催化降解亚甲基蓝溶液(MB)研究了不同g-C3N4添加量对TiO2/g-C3N4复合材料光催化性能的影响。实验结果表明,采用同轴静电纺丝法结合500℃煅烧工艺成功制备了大比表面积及高光催化性能的TiO2/g-C3N4复合材料。当g-C3N4添加量为0.15 g时,TiO2/g-C3N4复合材料对亚甲基蓝溶液(MB)的光催化降解效率可达93.8%,且经过5次重复实验后降解率仍可达80%以上。  相似文献   

15.
通常低温热压烧结的Si3N4陶瓷具有较高的硬度和较低的断裂韧性;而高温热压烧结的Si3N4陶瓷具有较低的硬度和较高的断裂韧性。为了获得高硬度、高韧性Si3N4陶瓷,添加20%SiCw(SiC晶须,体积分数)和2.5%ZrB2,在1 500℃低温热压制备了Si3N4基陶瓷,开展其相组成、致密度、显微结构和力学性能研究,并与1 800℃高温热压烧结Si3N4进行了对比研究。结果表明:SiCw的引入阻碍了Si3N4低温致密化,致密度从97.9%降低到92.9%,Vickers硬度从20.5 GPa降低到16.4 GPa,断裂韧性从2.9 MPa·m1/2增加到3.4 MPa·m1/2。同步引入SiCw和ZrB2  相似文献   

16.
传统的陶瓷加工技术成本高、周期长、缺陷多,难以生产高性能陶瓷,立体光刻技术是制造形状复杂陶瓷零件的一种高效手段。纯Si3N4粉体的折射率(n=2.1)与树脂(n=1.49)的折射率相差较大,光散射严重,导致其陶瓷浆料的固化深度较低,很难直接利用立体光刻技术成型Si3N4陶瓷零件。为解决Si3N4粉体难以光固化的难题,本研究采用表面包覆有机物和表面氧化两种方式改性Si3N4粉体,并对比两种方式对Si3N4粉体光固化特性的影响规律。结果表明,包覆实验后,有机物单体经过一定反应时间后可均匀附着在Si3N4粉体表面;氧化处理后,Si3N4粉体表面形成非晶SiO2层,该层均匀附着在粉体表面上。原始Si3N4粉体的固化深度仅为20 μm,经过包覆改性和800 ℃氧化4 h后,Si3N4粉体的固化深度分别可提高到40 μm和50 μm,两种方式均能有效提高原始Si3N4粉体的固化深度。  相似文献   

17.
首先以Si粉、SiO2微粉为原料,先在700℃空气气氛处理,然后在1 400℃氮气气氛下合成Si2N2O,研究了B4C添加量(外加质量分数分别为0、1.0%、2.0%、3.0%、4.0%)对Si2N2O合成效果的影响。然后根据B4C最优加入量,先在700℃空气气氛保温5 h,然后在1 400℃氮气气氛保温5 h制备了Si3N4/Si2N2O结合SiC试样。采用1 300℃风冷5次后试样的抗折强度保持率评价其抗热震性,分析了热震前后试样的物相组成和显微结构。结果表明:1)合成Si2N2O的B4C最优添加量为3%(w);在700℃空气处理时,B4C优先和气氛中O2反应生成液相B2O3,为1 400℃氮...  相似文献   

18.
负载助催化剂被广泛认为是提高光催化效率的有效方法。本文设计合成了非贵金属Ni3C纳米颗粒修饰的Zr-MOF/g-C3N4异质结,并将其用于光催化析氢反应。结果表明,Ni3C助催化剂不仅改善了复合材料中光生载流子的电荷分离和转移能力,而且降低了催化剂表面析氢过电位,可以大大提高Zr-MOF/g-C3N4的光催化析氢活性。在优化Ni3C负载量后,Zr-MOF/g-C3N4/Ni3C(4.8%)复合材料在可见光下的析氢速率可达3.405mmol·h-1·g-1,是Zr-MOF/g-C3N4析氢速率的7.2倍。  相似文献   

19.
石墨相碳化氮(g-C3N4)因带隙窄、电子结构独特、稳定性高、廉易得等优点成为光催化领域的研究热点。然而,原始氮化碳往往存在比表面积小、光响应范围窄、电子-空穴易复合等缺点。特殊结构 g-C3N4具有多级结构,可以调节载流子迁移路径,是显著提高 g-C3N4比表面积、改善其电子结构,促进电荷分离的有效手段。本文综述了不同结构和形貌的 g-C3N4及其复合体系的研究进展,并对不同形貌 g-C3N4的构效关系进行了分析,展望了未来 g-C3N4的研究方向和应用前景。  相似文献   

20.
本文通过高温煅烧乙酰胺和尿素混合物,成功制备了在可见光下具有优异光催化降解性能的C掺杂g-C3N4材料,然后将C掺杂g-C3N4和PVDF共混,通过静电纺丝制备了具有优异光催化性能的C掺杂g-C3N4/PVDF复合纳米纤维膜。结果表明,当乙酰胺与尿素的质量比为5%时,所制备的C掺杂g-C3N4粉末的光催化性能较好,乙酰胺的掺杂改性既改变了g-C3N4形貌结构,又改善g-C3N4的禁带宽度,从而进一步有效提高了C掺杂g-C3N4材料的光催化活性;当粉末掺杂比为12%时,所制备的PVDF纳米纤维复合膜光催化降解罗丹明B的效率达89.12%;复合纤维膜经过4个循环的光催化降解实验后,对罗丹明B的光催化降解效率保持在80%以上,解决了传统光催化剂难以回收和催化剂易被包覆而失效的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号