首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The combination of denosumab and teriparatide is an effective treatment strategy in postmenopausal osteoporosis, though skeletal gains are promptly lost when these agents are discontinued. In the DATA-HD study, we reported that a single dose of zoledronic acid (ZOL) maintains the increases in areal spine and hip bone mineral density (BMD) achieved with this combination for at least 12 months. The capacity of ZOL to maintain corresponding improvements in peripheral volumetric BMD and microarchitecture, however, has not been reported. In the 15-month DATA-HD study, 76 postmenopausal osteoporotic women were randomized to receive 9 months of teriparatide (20-μg or 40-μg daily) overlapped with denosumab (60 mg at months 3 and 9). In the Extension study, 53 participants received a single dose of ZOL (5 mg intravenously) 24–35 weeks after the last denosumab dose. We measured volumetric BMD and microarchitecture at the distal radius and tibia using high-resolution peripheral quantitative computed tomography at months 27 and 42. Despite ZOL administration, total and cortical BMD gradually decreased over 27 months resulting in values similar to baseline at the radius but still significantly above baseline at the tibia. At both sites, cortical porosity decreased to values below pretreatment baseline at month 27 but then increased from month 27 to 42. There were no significant changes in trabecular parameters throughout the 27-month post-ZOL observation period. Stiffness and failure load, at both sites, decreased progressively from month 15 42 though remained above baseline at the tibia. These findings suggest that in contrast to the largely maintained gains in dual-energy X-ray absorptiometry (DXA)-derived spine and hip BMD, a single dose of ZOL was not as effective in maintaining the gains in volumetric peripheral bone density and microarchitecture produced by 15 months of overlapping treatment with denosumab and teriparatide. Alternative therapeutic approaches that can fully maintain improvements in peripheral bone parameters require further study. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

2.
In postmenopausal osteoporosis, switching from teriparatide to denosumab results in continued bone mineral density (BMD) gains whereas switching from denosumab to teriparatide results in BMD loss. To assess the effects of these transitions on bone microarchitecture and strength, we performed high‐resolution peripheral QCT (HR‐pQCT) at the distal tibia and radius in postmenopausal osteoporotic women who received 24 months of teriparatide 20 μg daily followed by 24 months of denosumab 60 mg every 6 months, 24 months of denosumab followed by 24 months of teriparatide, or 24 months of both medications followed by 24 months of denosumab. The 77 women who completed at least one post‐switch visit are included in this analysis. Tibial cortical volumetric BMD (vBMD) increased between months 24 and 48 in the teriparatide‐to‐denosumab (net 48‐month change –0.8% ± 2.4%) and combination‐to‐denosumab groups (net 48‐month changes +2.4% ± 4.1%) but decreased in the denosumab‐to‐teriparatide group (net 48‐month change –3.4% ± 3.2%, p < 0.001 for all between‐group comparisons). Changes in total vBMD, cortical thickness, and estimated stiffness (by micro–finite element analysis [µFEA]) followed a similar pattern, as did changes at the radius. Conversely, tibial cortical porosity remained stable between months 24 and 48 in the teriparatide‐to‐denosumab and combination‐to‐denosumab groups (net 48‐month changes +7.2% ± 14.8% and –3.4% ± 12.1%, respectively) but increased in the denosumab‐to‐teriparatide group (net 48‐month change +16.2% ± 11.5%, p < 0.05 versus other groups). Trabecular vBMD changes did not differ among groups. Together, these findings demonstrate that in women treated with denosumab, switching to teriparatide is associated with a reduction in total and cortical vBMD, cortical thickness, and estimated strength, whereas switching to denosumab from teriparatide or combination therapy results in improvements in these parameters with the greatest improvements observed in women treated with combined therapy followed by denosumab. These findings strongly suggest that the use of teriparatide after denosumab should be avoided and that the use of combined teriparatide/denosumab followed by denosumab alone may be a useful treatment strategy in those with severe osteoporosis. © 2017 American Society for Bone and Mineral Research.  相似文献   

3.
In postmenopausal women at high risk of fracture, we previously reported that combined denosumab and high-dose (HD; 40 μg) teriparatide increased spine and hip bone mineral density (BMD) more than combination with standard-dose teriparatide (SD; 20 μg). To assess the effects of these combinations on bone microarchitecture and estimated bone strength, we performed high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and distal tibia in these women, who were randomized to receive either teriparatide 20 μg (n = 39) or 40 μg (n = 37) during months 0 to 9 overlapped with denosumab 60 mg s.c. given at months 3 and 9, for a 15-month study duration. The 69 women who completed at least one study visit after baseline are included in this analysis. Over 15 months, increases in total BMD were higher in the HD-group than the SD-group at the distal tibia (5.3% versus 3.4%, p = 0.01) with a similar trend at the distal radius (2.6% versus 1.0%, p = 0.06). At 15 months, cortical porosity remained similar to baseline, with absolute differences of −0.1% and −0.7% at the distal tibia and −0.4% and −0.1% at the distal radius in the HD-group and SD-group, respectively; p = NS for all comparisons. Tibial cortical tissue mineral density increased similarly in both treatment groups (1.3% [p < 0.0001 versus baseline] and 1.5% [p < 0.0001 versus baseline] in the HD-group and SD-group, respectively; p = 0.75 for overall group difference). Improvements in trabecular microarchitecture at the distal tibia and estimated strength by micro-finite element analysis at both sites were numerically greater in the HD-group compared with SD-group but not significantly so. Together, these findings suggest that short-term treatment combining denosumab with either high- or standard-dose teriparatide improves HR-pQCT measures of bone density, microstructure, and estimated strength, with greater gains in total bone density observed in the HD-group, which may be of benefit in postmenopausal women with severe osteoporosis. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

4.
If oversuppression of bone turnover explained the association between bisphosphonate use and atypical subtrochanteric femur fractures (AFF), this could be reversed with anabolic treatment such as teriparatide. We conducted a prospective, open‐label study in patients previously treated with bisphosphonates who sustained AFF, examining the response to 24‐month treatment with teriparatide on bone mineral density (BMD), trabecular bone score (TBS), bone turnover markers (BTM), and fracture healing as well as quantitative histomorphometry. We studied 14 patients. Baseline BMD, BTM, and TBS varied widely. On initial bone biopsies, 12 of 14 patients showed tetracycline labels, but mineralizing surface/bone surface was below published normal values in all but 2. Lumbar spine BMD increased significantly at month 24 (6.1% ± 4.3%, p < 0.05 versus baseline), whereas total hip BMD and TBS did not change significantly. Changes in BTM occurred as reported previously for patients without AFF treated with teriparatide after prior bisphosphonate treatment. At month 24, fractures were healed in 6 patients, showed partial healing in 3, were unchanged in 2, and showed nonunion in 1. In a patient with two fractures, the fracture that occurred before teriparatide treatment was reported as healed, but the fracture that occurred while on treatment showed only partial healing. Bisphosphonate‐treated patients who sustain AFF show heterogeneity of bone turnover. Treatment with teriparatide resulted in increases in BTM and lumbar spine BMD, as has been reported for patients without AFF. There was no significant effect of teriparatide on hip BMD, mineralizing surface to bone surface (MS/BS), or TBS and no consistent effect on fracture healing. In the context of a patient who has experienced an AFF after receiving bisphosphonate treatment, therapy with teriparatide for 24 months would be expected to increase BMD and BTM (and probably reduce the risk of fractures resulting from osteoporosis) but should not be relied on to aid in healing of the AFF. © 2017 American Society for Bone and Mineral Research.  相似文献   

5.
Romosozumab monoclonal antibody treatment works by binding sclerostin and causing rapid stimulation of bone formation while decreasing bone resorption. The location and local magnitude of vertebral bone accrual by romosozumab and how it compares to teriparatide remains to be investigated. Here we analyzed the data from a study collecting lumbar computed tomography (CT) spine scans at enrollment and 12 months post-treatment with romosozumab (210 mg sc monthly, n = 17), open-label daily teriparatide (20 μg sc, n = 19), or placebo (sc monthly, n = 20). For each of the 56 women, cortical thickness (Ct.Th), endocortical thickness (Ec.Th), cortical bone mineral density (Ct.bone mineral density (BMD)), cancellous BMD (Cn.BMD), and cortical mass surface density (CMSD) were measured across the first lumbar vertebral surface. In addition, color maps of the changes in the lumbar vertebrae structure were statistically analyzed and then visualized on the bone surface. At 12 months, romosozumab improved all parameters significantly over placebo and resulted in a mean vertebral Ct.Th increase of 10.3% versus 4.3% for teriparatide, an Ec.Th increase of 137.6% versus 47.5% for teriparatide, a Ct.BMD increase of 2.1% versus a −0.1% decrease for teriparatide, and a CMSD increase of 12.4% versus 3.8% for teriparatide. For all these measurements, the differences between romosozumab and teriparatide were statistically significant (p < 0.05). There was no significant difference between the romosozumab-associated Cn.BMD gains of 22.2% versus 18.1% for teriparatide, but both were significantly greater compared with the change in the placebo group (−4.6%, p < 0.05). Cortical maps showed the topographical locations of the increase in bone in fracture-prone areas of the vertebral shell, walls, and endplates. This study confirms widespread vertebral bone accrual with romosozumab or teriparatide treatment and provides new insights into how the rapid prevention of vertebral fractures is achieved in women with osteoporosis using these anabolic agents. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

6.
Clinical data suggest concomitant therapy with bisphosphonates and parathyroid hormone (PTH) may blunt the anabolic effect of PTH; rodent models suggest that infrequently administered bisphosphonates may interact differently. To evaluate the effects of combination therapy with an intravenous infusion of zoledronic acid 5 mg and daily subcutaneous recombinant human (rh)PTH(1–34) (teriparatide) 20 µg versus either agent alone on bone mineral density (BMD) and bone turnover markers, we conducted a 1‐year multicenter, multinational, randomized, partial double‐blinded, controlled trial. 412 postmenopausal women with osteoporosis (mean age 65 ± 9 years) were randomized to a single infusion of zoledronic acid 5 mg plus daily subcutaneous teriparatide 20 µg (n = 137), zoledronic acid alone (n = 137), or teriparatide alone (n = 138). The primary endpoint was percentage increase in lumbar spine BMD (assessed by dual‐energy X‐ray absorptiometry [DXA]) at 52 weeks versus baseline. Secondary endpoints included change in BMD at the spine at earlier time points and at the total hip, trochanter, and femoral neck at all time points. At week 52, lumbar spine BMD had increased 7.5%, 7.0%, and 4.4% in the combination, teriparatide, and zoledronic acid groups, respectively (p < .001 for combination and teriparatide versus zoledronic acid). In the combination group, spine BMD increased more rapidly than with either agent alone (p < .001 versus both teriparatide and zoledronic acid at 13 and 26 weeks). Combination therapy increased total‐hip BMD more than teriparatide alone at all times (all p < .01) and more than zoledronic acid at 13 weeks (p < .05), with final 52‐week increments of 2.3%, 1.1%, and 2.2% in the combination, teriparatide, and zoledronic acid groups, respectively. With combination therapy, bone formation (assessed by serum N‐terminal propeptide of type I collagen [PINP]) increased from 0 to 4 weeks, declined minimally from 4 to 8 weeks, and then rose throughout the trial, with levels above baseline from 6 to 12 months. Bone resorption (assessed by serum β‐C‐telopeptide of type I collagen [β‐CTX]) was markedly reduced with combination therapy from 0 to 8 weeks (a reduction of similar magnitude to that seen with zoledronic acid alone), followed by a gradual increase after week 8, with levels remaining above baseline for the latter half of the year. Levels for both markers were significantly lower with combination therapy versus teriparatide alone (p < .002). Limitations of the study included its short duration, lack of endpoints beyond DXA‐based BMD (e.g., quantitative computed tomography and finite‐element modeling for bone strength), lack of teriparatide placebo, and insufficient power for fracture outcomes. We conclude that while teriparatide increases spine BMD more than zoledronic acid and zoledronic acid increases hip BMD more than teriparatide, combination therapy provides the largest, most rapid increments when both spine and hip sites are considered. © 2011 American Society for Bone and Mineral Research.  相似文献   

7.
Increased bone turnover and rapid bone loss follow discontinuation of denosumab. We investigated the long-term efficacy of zoledronate (ZOL) in maintaining bone mineral density (BMD) after discontinuation of denosumab. In this randomized, open-label, interventional study, we included 61 postmenopausal women and men older than 50 years discontinuing denosumab after 4.6 ± 1.6 years. We administered ZOL 6 months (6 M) or 9 months (9 M) after the last denosumab or when bone turnover had increased (observation group [OBS]). ZOL was readministrated if p-cross-linked C-terminal telopeptide (p-CTX) increased ≥1.26 μg/L or BMD decreased ≥5%. The results after 12 months have previously been published; here we report the outcome after 24 months (ClinicalTrials NCT03087851). Fifty-eight patients completed the study. From 12 to 24 months after the initial ZOL, lumbar spine (LS) BMD was maintained: 0.9 ± 0.9%, 0.4 ± 0.8%, and 0.3 ± 0.7% in the 6 M, 9 M, and OBS groups, respectively (p > .05, no between-group differences). Similarly, total hip (TH) and femoral neck (FN) BMD did not change in any group during year 2. From baseline to 24 months after ZOL, LS BMD decreased by 4.0 ± 0.8%, 4.1 ± 0.8%, and 4.3 ± 1.5% in the 6 M, 9 M, and OBS groups, respectively (p < .001, no between-group differences). Significant bone loss (LS, TH, or FN) was found in all groups 24 months after ZOL: 6 M group: n = 12 (60%), 9 M group: n = 7 (37%), and OBS group: n = 10 (53%). P-CTX did not change significantly during the second year (p > .05, no between-group differences). No patient fulfilled the CTX or fracture criteria for retreatment during year 2; however, 9 patients were retreated at M24 due to BMD loss ≥5%. Two patients sustained a non-vertebral fracture during year 2. Treatment with ZOL subsequent to long-term denosumab did not fully prevent increased bone turnover and bone loss during the first year; however, CTX remained with the reference range and BMD was maintained during the second year. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

8.
Implant loosening is the most common indication for revision surgery after total hip arthroplasty (THA). Although bone resorption around the implants plays a pivotal role in the pathophysiology of loosening, it is unknown whether potent early inhibition of osteoclasts could mitigate this process and thus reduce the need for revision surgery. We performed a randomized, double-blind, placebo-controlled phase 2 trial in 64 patients aged 35 to 65 years with unilateral osteoarthritis of the hip. They underwent surgery with an uncemented THA and were randomized to either two subcutaneous doses of denosumab (n = 32) or placebo (n = 32) given 1 to 3 days and 6 months after surgery. Patients were followed for 24 months. Primary outcome was periprosthetic bone mineral density (BMD) of the hip at 12 months as measured by dual-energy X-ray absorptiometry (DXA). In addition, [18F] sodium fluoride positron emission tomography/CT (F-PET) was performed in half of the patients for analysis of periprosthetic standardized uptake value (SUV). Analyses were made according to intention-to-treat principles. The trial was registered at ClinicalTrials.gov 2011-001481-18, NCT01630941. Denosumab potently inhibited early periprosthetic bone loss. After 12 months, BMD in the denosumab group was 32% (95% confidence interval [CI] 22–44) higher in Gruen zone 7 and 11% (95% CI 8–15) higher in zones 1 to 7. After 24 months, the difference in BMD between groups had decreased to 15% (95% CI 4–27) in zone 7 and 4% (95% CI 0–8) in zones 1 to 7. In both groups, SUV increased after surgery, but the increase was less pronounced in the denosumab group. Biochemical markers of bone metabolism decreased in the denosumab group in the first 12 months, but a rebound effect with marker concentrations above baseline was observed after 24 months. Denosumab potently prevents early periprosthetic bone loss after uncemented THA; however, the effect diminishes after discontinuation of treatment. Further research is needed to determine whether this bone loss will prove to be of clinical importance and, if so, whether the positive effect observed in this study could be preserved by either prolonged treatment with denosumab or additional antiresorptive treatment. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.  相似文献   

9.
Dual-energy X-ray absorptiometric bone mineral density (DXA BMD) is a strong predictor of fracture risk in untreated patients. However, previous patient-level studies suggest that BMD changes explain little of the fracture risk reduction observed with osteoporosis treatment. We investigated the relevance of DXA BMD changes as a predictor for fracture risk reduction using data from the FREEDOM trial, which randomly assigned placebo or denosumab 60 mg every 6 months to 7808 women aged 60 to 90 years with a spine or total hip BMD T-score < -2.5 and not < -4.0. We took a standard approach to estimate the percent of treatment effect explained using percent changes in BMD at a single visit (months 12, 24, or 36). We also applied a novel approach using estimated percent changes in BMD from baseline at the time of fracture occurrence (time-dependent models). Denosumab significantly increased total hip BMD by 3.2%, 4.4%, and 5.0% at 12, 24, and 36 months, respectively. Denosumab decreased the risk of new vertebral fractures by 68% (p < 0.0001) and nonvertebral fracture by 20% (p = 0.01) over 36 months. Regardless of the method used, the change in total hip BMD explained a considerable proportion of the effect of denosumab in reducing new or worsening vertebral fracture risk (35% [95% confidence interval (CI): 20%-61%] and 51% [95% CI: 39%-66%] accounted for by percent change at month 36 and change in time-dependent BMD, respectively) and explained a considerable amount of the reduction in nonvertebral fracture risk (87% [95% CI: 35% - >100%] and 72% [95% CI: 24% - >100%], respectively). Previous patient-level studies may have underestimated the strength of the relationship between BMD change and the effect of treatment on fracture risk or this relationship may be unique to denosumab.  相似文献   

10.
Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: −5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

12.
Measurements of change in bone mineral density (BMD) are thought to be weak predictors of treatment effect on the reduction of fracture risk. In this study we report an alternative year-on-year approach for the estimation of treatment effect explained by BMD in which we examine the relationship between fracture risk and the most recent change in BMD. We studied 7736 postmenopausal women (ages 65 to 89 years) who were participants in the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly-Pivotal Fracture Trial (HORIZON-PFT) and were randomized to either intravenous administration of zoledronic acid or placebo. The percentage of treatment effect explained by change in total hip BMD was estimated using the alternative year-on-year approach and the standard approach of looking at change over 3 years. We also studied a subset of 1132 women in whom procollagen type 1 amino-terminal propeptide (PINP) was measured at baseline and 12 months, to estimate the percentage of treatment effect explained by change in PINP. Regardless of the method used, the change in total hip BMD explained a large percentage of the effect of zoledronic acid in reducing new vertebral fracture risk (40%; 95% CI, 30% to 54%; for the 3-year analysis). The treatment effects for nonvertebral fracture were not statistically significant for the year-on-year analysis but 3-year change in BMD explained 61% (95% CI, 24% to 156%) of treatment effect. Change in PINP explained 58% (95% CI, 15% to 222%) of the effect of zoledronic acid in reducing new vertebral fracture risk. We conclude that our estimates of the percentage of treatment effect explained may be higher than in previous studies because of high compliance with zoledronic acid (due to its once-yearly intravenous administration). Previous studies may have underestimated the relationship between BMD change and the effect of treatment on fracture risk.  相似文献   

13.
Denosumab reduces bone resorption and vertebral and nonvertebral fracture risk. Denosumab discontinuation increases bone turnover markers 3 months after a scheduled dose is omitted, reaching above‐baseline levels by 6 months, and decreases bone mineral density (BMD) to baseline levels by 12 months. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7 months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant‐years during the on‐treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100 participant‐years). Among participants with ≥1 off‐treatment vertebral fracture, the proportion with multiple (>1) was larger among those who discontinued denosumab (60.7%) than placebo (38.7%; p = 0.049), corresponding to a 3.4% and 2.2% risk of multiple vertebral fractures, respectively. The odds (95% confidence interval) of developing multiple vertebral fractures after stopping denosumab were 3.9 (2.1–7. 2) times higher in those with prior vertebral fractures, sustained before or during treatment, than those without, and 1.6 (1.3–1.9) times higher with each additional year of off‐treatment follow‐up; among participants with available off‐treatment total hip (TH) BMD measurements, the odds were 1.2 (1.1–1.3) times higher per 1% annualized TH BMD loss. The rates (per 100 participant‐years) of nonvertebral fractures during the off‐treatment period were similar (2.8, denosumab; 3.8, placebo). The vertebral fracture rate increased upon denosumab discontinuation to the level observed in untreated participants. A majority of participants who sustained a vertebral fracture after discontinuing denosumab had multiple vertebral fractures, with greatest risk in participants with a prior vertebral fracture. Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov : NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
Once-daily injections of teriparatide initially increase biochemical markers of bone formation and resorption, but markers peak after 6-12 months and then decline despite continued treatment. We sought to determine whether increasing teriparatide doses in a stepwise fashion could prolong skeletal responsiveness. We randomized 52 postmenopausal women with low spine and/or hip bone mineral density (BMD) to either a constant or an escalating subcutaneous teriparatide dose (30 μg daily for 18months or 20 μg daily for 6 months, then 30 μg daily for 6 months, and then 40 μg daily for 6 months). Serum procollagen I N-terminal propeptide, osteocalcin, and C-terminal telopeptide of type I collagen were assessed frequently. BMD of the spine, hip, radius, and total body was measured every 6 months. Acute changes in urinary cyclic AMP in response to teriparatide were examined in a subset of women in the constant dose group. All bone markers differed significantly between the two treatment groups. During the final six months, bone markers declined in the constant dose group but remained stable or increased in the escalating dose group (all markers, p<0.017). Nonetheless, mean area under the curve did not differ between treatments for any bone marker, and BMD increases were equivalent in both treatment groups. Acute renal response to teriparatide, as assessed by urinary cyclic AMP, did not change over 18 months of teriparatide administration. In conclusion, stepwise increases in teriparatide prevented the decline in bone turnover markers that is observed with chronic administration without altering BMD increases. The time-dependent waning of the response to teriparatide appears to be bone-specific.  相似文献   

15.
Osteoporosis Pseudoglioma (OPPG) is characterized by severe juvenile-onset osteoporosis and ocular abnormalities. It is caused by one of several inactivating mutations in LRP5, a gene importantly involved in bone formation. The objective of this study was to evaluate the efficacy of teriparatide in a young man with OPPG. The subject of this case report is a 19-year-old man with congenital blindness and low trauma fractures because of OPPG. A 2-year course of teriparatide, 20 μg/day, was initiated after a 6-year course of intravenous pamidronate infusions, the latter 3 years of which had minimal effects on bone mineral density (BMD). Measurements in serum were made of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type I collagen (P1NP), total and ionized calcium, phosphate, uric acid, complete blood count, and renal and liver function tests. Urinary calcium/creatinine ratio was determined. BMD was measured by DXA yearly. BMD increased by 9.7% in lumbar spine and 10.2% in right femur hip. CTX rose early, peaking in month 3, followed by an increase in P1NP, peaking in month 9. Both indices returned to baseline by month 24. The increase in CTX followed by P1NP is an unusual time course when teriparatide is used to treat osteoporosis but may be typical of low bone turnover states. There were no adverse events. In a patient with OPPG, teriparatide markedly increased BMD in the lumbar spine and femur hip.  相似文献   

16.
Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T‐score ≤–2.0 and ≥–3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open‐label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker β‐CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and β‐CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab. © 2018 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

17.
We aimed to compare the clinical validity and the detectability of response of short‐term changes in bone mineral density (BMD; hip and spine) and bone turnover markers (serum PINP and CTX) through secondary analysis of trial data. We analyzed data on 7765 women with osteoporosis randomized to 5‐mg once‐yearly infusions of zoledronic acid or placebo in the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly Pivotal Fracture Trial (HORIZON‐PFT; trial ran from 2002 to 2006) and the first extension trial (trial ran from 2006 to 2009). We assessed the clinical validity and detectability of response for 1‐year measurements of the following monitoring tests: total hip and lumbar spine BMD, serum N‐terminal propeptide of type I collagen (sPINP), and serum C‐telopeptide of type I collagen (sCTX; 6‐month measurement used). Clinical validity was assessed by examining prediction of clinical fracture in Cox models; detectability of response to treatment was assessed by the ratio of signal to noise, estimated from the distributions of change in zoledronic acid and placebo groups. Baseline measurements were available for 7683 women with hip BMD, 558 with spine BMD, 1246 with sPINP, and 517 women with sCTX. Hip BMD and sPINP ranked highly for prediction of clinical fracture, whereas sPINP and sCTX ranked highly for detectability of response to treatment. Serum PINP had the highest overall ranking. In conclusion, serum PINP is potentially useful in monitoring response to zoledronic acid. Further research is needed to evaluate the effects of monitoring PINP on treatment decisions and other clinically relevant outcomes. © 2016 American Society for Bone and Mineral Research.  相似文献   

18.
Denosumab, a fully human monoclonal antibody to RANKL, decreases bone remodeling, increases bone density, and reduces fracture risk. This study evaluates the time course and determinants of bone turnover marker (BTM) response during denosumab treatment, the percentage of denosumab‐treated women with BTMs below the premenopausal reference interval, and the correlations between changes in BTMs and bone mineral density (BMD). The BTM substudy of the Fracture REduction Evaulation of Denosumab in Osteoporosis every 6 Months (FREEDOM) Trial included 160 women randomized to subcutaneous denosumab (60 mg) or placebo injections every 6 months for 3 years. Biochemical markers of bone resorption (serum C‐telopeptide of type I collagen [CTX] and tartrate‐resistant acid phosphatise [TRACP‐5b]) and bone formation (serum procollagen type I N‐terminal propeptide [PINP] and bone alkaline phosphatase [BALP]) were measured at baseline and at 1, 6, 12, 24, and 36 months. Decreases in CTX were more rapid and greater than decreases in PINP and BALP. One month after injection, CTX levels in all denosumab‐treated subjects decreased to levels below the premenopausal reference interval. CTX values at the end of the dosing period were influenced by baseline CTX values and the dosing interval. The percentage of subjects with CTX below the premenopausal reference interval before each subsequent injection decreased from 79% to 51% during the study. CTX and PINP remained below the premenopausal reference interval at all time points in 46% and 31% denosumab‐treated subjects, respectively. With denosumab, but not placebo, there were significant correlations between CTX reduction and BMD increase (r = ?0.24 to ?0.44). The BTM response pattern with denosumab is unique and should be appreciated by physicians to monitor this treatment effectively. © 2011 American Society for Bone and Mineral Research.  相似文献   

19.
Discontinuing denosumab is associated with bone loss and possibly increased fracture risk. We investigated if treatment with zoledronate (ZOL) could prevent bone loss and if the timing of the ZOL infusion influenced the outcome. We report on a 2-year randomized, open label, interventional study including 61 patients with osteopenia, discontinuing denosumab after 4.6 ± 1.6 years. We administrated ZOL 6 months (6M group, n = 20) or 9 months (9M group, n = 20) after the last denosumab injection or when bone turnover had increased (OBS group, n = 21). We monitored the patients with DXA and bone turnover markers. Our primary endpoints were change in lumbar spine BMD (LSBMD) 6 months after ZOL and the proportion of patients who failed to maintain BMD. The study is ongoing ( clinicaltrials.gov ; NCT03087851). We included 61 participants and 59 patients completed follow-up 12 months after ZOL. Six months after ZOL, LSBMD had decreased significantly by (mean ± SE) 2.1% ± 0.9%, 4.3% ± 1.1%, and 3.0% ± 1.1% in the 6M, 9M, and OBS groups, respectively, and by 4.8% ± 0.7%, 4.1% ± 1.1%, and 4.7% ± 1.2% 12 months after ZOL in the 6M, 9M, and OBS groups, respectively (p < .02, no between-group differences). BMD loss above the least significant change was seen in all groups; at the spine: 6M, n = 6 (30%); 9M, n = 9 (45%); and OBS, n = 9 (47%); and at the total hip: 6M, n = 1 (5%); 9M, n = 5 (25%); and OBS, n = 2 (11%). In the 6M group p-crosslinked C-terminal telopeptide (p-CTX) decreased initially, but increased rapidly thereafter, and 6 months after ZOL, p-CTX was 0.60 ± 0.08 g/L. p-CTX increased rapidly in the 9M and OBS groups, was suppressed by ZOL but increased again thereafter; p-CTX was 0.47 ± 0.05 μg/L and 0.47 ± 0.05 μg/L in the 9M and OBS groups 6 months after ZOL, respectively. Incident vertebral fractures were seen in two women in the 9M group. Treatment with ZOL irrespective of the timing did not fully prevent loss of BMD in patients discontinuing denosumab. © 2020 American Society for Bone and Mineral Research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号