首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to achieve efficient use of nitrogen (N) and minimize pollution potentials, producers of irrigated maize (Zea mays L.) must make the best use of N from all sources. This study was conducted to evaluate crop utilization of nitrate in irrigation water and the effect N fertilizer has on N use efficiencies of this nitrate under irrigated maize production. The study site is representative of a large portion of the Central Platte Valley of Nebraska where ground water nitrate-N (NO3-N) concentrations over 10 mg L–1 are common. Microplots were established to accommodate four fertilizer N rates (0, 50, 100, and 150 kg ha–1) receiving irrigation water containing three levels of NO3-N (0, 10, 20 mg L–1). Stable isotope15N was applied as a tracer in the irrigation water for treatments containing 10 and 20 mg L–1 NO3-N. Plots that did not receive nitrate in the irrigation water where tagged with15N fertilizer as a sidedress treatment. Sidedressed N fertilizer significantly reduced irrigation-N uptake efficiencies. When residual N uptake is added to first year plant usage, total irrigation NO3-N uptake efficiencies are similar to total sidedress N fertilizer uptake efficiencies for our cropping system over the two year period. Efficiency of irrigation-N use depends on crop needs and availability of N from other sources during the irrigation season.  相似文献   

2.
A 3-year multi-site study was carried out on rainfed Vertisols under Mediterranean conditions in southern Europe to determine the influence of the N fertilizer rate on soil nitrates, N uptake and N use efficiency in bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. var. Durum Desf.) in rotation with sunflower (Heliathus annuus L.). Nitrogen fertilizer rates were 0, 100, 150 and 200 kg N ha−1 applied in equal proportions at sowing, tillering and stem elongation. The experiment was designed as a randomized complete block with a split plot arrangement and four replications. Nitrogen harvest index (NHI), N uptake/grain yield (NUp/GY), N use efficiency (NUE), N utilization efficiency (NUtE), N uptake efficiency (NUpE) and N apparent recovery fraction (NRF) were calculated. Differences were observed in N use efficiency between the two modern bread wheat and durum wheat cultivars studied. In comparison to durum, bread wheat displayed greater N accumulation capacity and a more efficient use of N for grain production. While under N-limiting conditions, the behavior was similar for both wheat types. No difference was noted between wheat types with regard to changes in soil residual levels over the study period at the various sites. The 100-kg ha−1 N fertilizer rate kept soil nitrates stable at a moderate level in plots where both wheat types were sown.  相似文献   

3.
Information on N removal by maize (Zea mays L.) grain production is not only required for proper soil N management, but also a prerequisite for environmental risk assessment. The objectives of this field study were to (i) assess the variations of maize grain N removal in relation to weather and agronomic practices, and (ii) determine if a common N removal factor can be used for environment risk assessment with the Ontario N index method. Maize grain samples from four field experiments including treatments of hybrids, rotation systems and fertilizer N levels under different environmental conditions were used to determine nitrogen removal factor (grain N in kg ha−1 divided by grain yield in Mg ha−1, i.e. kg N Mg−1). In general, grain N removal averaged 12.0 kg N Mg−1, which is substantially smaller than 16 kg Mg−1 used in the Ontario N Index model. However, large variations (7.1–16.7 kg N Mg−1) in the N removal factor existed among years, rotation systems, hybrids and level of fertilizer N application. Our data indicate that an index using a constant grain N removal factor may not be representative of different growing conditions, hybrids and fertilizer levels. Hence, care must be taken when using a constant grain N removal factor with the N index approach to assess N overloading for nutrient management legislation purposes.  相似文献   

4.
Effects of crop rotation and fertilization (nitrogen and manure) on concentrations of soil organic carbon (SOC) and total soil nitrogen (TSN) in bulk soil and in soil aggregates were investigated in a long-term field experiment established in 1953 at Ås, Norway. The effect of these management practices on SOC sequestration was estimated. The experiment had three six-course rotations: (I) continuous spring grain, (II) spring grain for 3 years followed by root crops for 3 years, and (III) spring grain for 2 years followed by meadow for 4 years. Three fertilizer treatments compared were: (A) 30–40 kg N ha–1; (B) 80–120 kg N ha–1; and (C) a combination of B and 60 Mg farmyard manure (FYM) ha–1. All plots received a basal rate of PK fertilizer. Soil samples from these treatments were collected in autumn 2001 and analyzed for aggregate size, SOC and TSN concentrations. There were significant increases in 0.6–2 mm and < 0.6 mm aggregate size fractions, and reduction in the 6–20 mm and the > 20 mm sizes for rotation III only. There were also significant differences among rotations with regard to water stable aggregation. The order of increase in stability was II < I < III. Fertilizer treatment had no effect on aggregation or aggregate size distribution, but there was a slight tendency of increased stability with the application of FYM. Aggregate stability increased with increasing concentration of SOC (r2 = 0.53). The SOC and TSN concentrations in bulk soil were significantly higher in rotation III than in rotations II and I. Application of FYM increased SOC and TSN concentrations significantly in the 0–10 cm soil depth, but there were few significant differences between fertility treatments A and B. There was a trend of increase in concentration of SOC and TSN with decreasing aggregate size, but significant differences in these parameters in different aggregate size fractions were found only in few cases. The SOC and TSN concentrations were higher in >0.25 mm than in < 0.25 mm aggregates. The SOC sequestration rate was 77–167 kg SOC ha–1 yr–1 by increasing the N rate and 40–162 kg SOC ha–1 yr–1 by applying FYM. The SOC sequestration rate by judicious use of inorganic fertilizer was the greatest in the grain–meadow rotation, while that by application of FYM was the greatest in the all grain rotation.  相似文献   

5.
The use of15N as a tracer in soil/plant research is examined. The limitations of the so-called Ndff approach are discussed to show the need to consider not just the fate of the added label but also the path that was followed and the rate of the transformation. The development of15N isotope dilution techniques to determine gross rates of nitrogen transformation in soil is reviewed with some indications as to the further development of the approach.  相似文献   

6.
Field experiments were carried out during the wet seasons (May to September) of 1980 and 1981 in order to determine the response of five pearl millet cultivars to nitrogen fertilization in savanna region of Nigeria. There were varietal differences in yield and nitrogen uptake in response to nitrogen rates. Most cultivars responded significantly up to 75 kg N ha–1. Hybrid outyielded other cultivars at both locations each year. Nitrogen use efficiency was highest with the Hybrid, compared to other cultivars.  相似文献   

7.
A screen house experiment was conducted to determine the effect of N (0, 50, 100 and 150 mg N kg–1) and Cd (0, 5, 10, 25 and 50 mg Cd kg–1) on growth and concentration and uptake of N and Cd in lettuce grown for 70 days. Nitrogen application increased significantly fresh yield, dry matter yield, N concentration and uptake, whereas these parameters were significantly decreased by Cd application at all levels of N. The concentration and uptake of Cd were significantly increased by Cd application at all levels of N. This increased Cd uptake was related to increased availability of Cd in soil. Application of N upto 100 mg N kg–1 increased Cd uptake, whereas there was sharp reduction in Cd uptake at 150 mg N kg–1 treatment at all levels of Cd. The plant dilution effects and reduced translocation of Cd from roots to tops or the competition at the root absorption sites at highest level of N seem to be the mechanisms responsible for N suppressed Cd uptake in this study.  相似文献   

8.
Fifteen field trials were conducted to evaluate soil mineral N measurement as a means for quantifying the total N supply to forage maize and so to form the basis for fertilizer recommendations on a crop-specific basis. In every trial, 4 rates of cattle manure N (nominally 0, 80, 160, 240 kg N per ha) and 4 rates of ammonium nitrate (0, 50, 100, 150 kg N per ha) were factorially combined. Soil mineral N measurements were made before manure application, at the time of maize drilling, 7-10 weeks after drilling and after harvest. Measurements on control treatments which received no manure or ammonium nitrate showed extensive net mineralisation of soil N (mean 140 kg N per ha) in the 7-10 weeks after drilling followed by a decrease due to crop uptake, and probably net immobilisation, of approximately the same amount by harvest. This net mineralisation was probably the reason why only one trial showed a significant dry-matter yield response to ammonium nitrate. Results indicated that , to be useful for N recommendations, soil mineral N measurements should be taken 7-10 weeks after drilling. Only if the amount of mineral N at this time is less than expected crop N offtake should fertilizer N be applied. A mean of around 64% of the N applied in ammonium nitrate could be accounted for in soil mineral N after harvest of the maize, although this was reduced to 24% in the single trial where a dry-matter response to ammonium nitrate was recorded.  相似文献   

9.
Two field experiments, in which differing amounts and types of plant residues were incorporated into a red earth soil, were conducted at Katherine, N.T., Australia. The aim of the work was to evaluate the effect of the residues on uptake of soil and fertilizer N by a subsequent sorghum crop, on the accumulation and leaching of nitrate, and on losses of N.Stubble of grain sorghum applied at an exceptionally high rate (~ 18 000 kg ha–1) reduced uptake of N by sorghum by 13% and depressed the accumulation of nitrate under a crop and particularly under a fallow.Loss of fertilizer N, movement of nitrate down the profile, and uptake by the crop was studied in another experiment after application of N as15NH4 15NO3 to field microplots. By four weeks after fertilizer application 14% had been lost from the soil-plant system and by crop maturity 36 per cent had been lost. The pattern of15N distribution in the profile suggested that losses below 150 cm had occurred during crop growth. The recovery of15N by the crop alone ranged from 16 to 32 per cent. There was an apparent loss of N from the crop between anthesis and maturity. Residue levels common to sorghum crops in the region (~ 2000 kg ha–1) did not significantly affect uptake by a subsequent sorghum crop, N losses, or distribution of nitrate in the profile.  相似文献   

10.
A major challenge for low-external-input farming systems is to secure the N supply. Lack of synchrony between mineralization of organic N sources and plant N requirements is causing many growers to use different techniques to overcome this problem. One of these techniques is the application of soluble water extracts of different farm residues and plants. A field study was conducted to study the crop uptake of applied 15N-labeled alfalfa and clover extracts as compared to the N uptake from15N-glycine and three levels of 15N-(NH4)2SO4. The results show that total N accumulation in the field crops, squash and lettuce was primarily affected by the amount of added N (P ≤ 0.05) and not by the form in which the N was applied (P ≤ 0.05). The utilization efficiencies of N (pNdff) from plant extracts and glycine increased (P ≤ 0.05) gradually from 10, 20, to 30 days after application in contrast to (NH4)2SO4 which peaked in utilization efficiencies of 56% around 20 days after application. The pNdff reached 60%, 40% and 36% of the applied glycine, alfalfa and clover extracts, respectively in lettuce. Squash showed the same pattern during at 10, 20 and 30 days; however, the proportion of N derived from most of the treatments was higher in squash than in lettuce (P ≤ 0.05). These results indicate that plant extracts of clover and alfalfa can be used as efficient N fertilisers in low-external-input agroecosystems.  相似文献   

11.
Changes in quantity of soil mineral nitrogen down to a depth of 1 m in cloverfree grassland were monitored within one growing season and over successive growing seasons. Accumulation of mineral nitrogen in the soil occurred on permanent grassland with split application of nitrogen totalling more than 400 kg N ha–1 yr–1 and on young grassland, sown after arable crops, with applications of more than 480 kg N ha–1 yr–1. The relationship between the rate of nitrogen application minus nitrogen uptake, and accumulation of mineral nitrogen in the upper 50 cm of soil during each growing season is described.  相似文献   

12.
A data set originating from winter wheat experiments at three locations during two years is described. The purpose is to provide sufficient data for testing simulation models for soil nitrogen dynamics, crop growth and nitrogen uptake. Each experiment comprised three different nitrogen treatments, and observations were made at intervals of two or three weeks. The observations included measurements of soil mineral nitrogen content, soil water content, groundwater table, dry matter production and dry matter distribution, nitrogen uptake, nitrogen distribution and root length density.  相似文献   

13.
Response of lowland rice to sources and methods of nitrogen fertilizer application were summarized for more than 100 experiments. In about 2/3 of the experiments, the yield increase per kg of fertilizer N was judged to be relatively poor with best split applications of urea. Based on frequency distribution, sulfur coated urea and urea briquets or urea supergranules deep placed more often produced satisfactory yield increases than best split urea, but even with these sources/methods the yield increases were judged to be relatively poor in about 1/2 of the experiments. There is an enormous potential to increase rice production with no further increases in inputs of fertilizer N if we could learn to match the best method/source of fertilizer with the soil-crop management complex.About 60% of the yields with no fertilizer N were in the range of 2 to 4 t/ha. Based on the average yield response to urea, this is equivalent to about 100 kg of urea N. It would appear worthwhile to study ways to improve utilization of soil nitrogen since it is already in place on the land and apparently in fairly abundant amounts in many soils.About 50 experiments with15N fertilizers were summarized. In almost all cases, the uptake of tagged fertilizer was less than the net increase in N in the above ground matter. In about 2/3 of the experiments, the addition of fertilizer N increased soil N uptake more than 20% and in 1/3 of the experiments the uptake of soil N was increased more than 40%. These results lead to much uncertainty about practical interpretation and use of15N data.  相似文献   

14.
Although efficient use of N remains a critical constraint to productivity in irrigated lowland rice, a comprehensive database does not exist for the efficiency of on-farm management of N and other nutrients. In 1994, IRRI initiated its Mega Project on Reversing Trends of Declining Productivity in Intensive Irrigated Rice Systems in selected rice production domains of five tropical Asian nations to improve on-farm fertilizer-use efficiency and to monitor long-term productivity trends as related to fertilizers and other inputs. Data are reported here for the first crop cycle, the 1994–95 dry season. The indigenous soil N supply (INS) was estimated by aboveground crop N uptake and grain yield (GY) in plots without applied N established in farmers' fields under otherwise favorable growth conditions. The fertilizer N rate each farmer applied to his/her field surrounding these plots was recorded; GY was also measured in that area. In each domain, GY in unfertilized plots varied considerably among farms, as the range between maximum and minimum values within each domain was at least 2.8 t ha-1, thus of comparable magnitude to mean GY for these plots. Fertilizer N rates varied from 36–246 kg ha-1 across all domains, but their lack of relationship to INS contributed to relatively low fertilizer N efficiency and high variability in efficiency among farms. Mean agronomic efficiency (GY/applied N rate) for each domain was only 6–15 kg grain kg-1 N, while values for individual farmers ranged from 0 to 59 kg grain kg-1 N. Initial data on P and K fertilizer management also suggest highly variable applications at suboptimal efficiency. These results indicate the potential for greater fertilizer efficiency from improved congruence between the indigenous soil supply and applied fertilizer, and emphasize the need for field-specific nutrient management. Although agronomic efficiency and partial factor productivity (GY/applied N rate) can each be used to describe the efficiency of fertilizer applications, a complete analysis of nutrient management should include both terms, grain yield, fertilizer rates, and native soil fertility.  相似文献   

15.
Field experiments were conducted during wet seasons (June to October) of 1974, 1976 and 1977 to determine the response of newly developed hybrids and varieties of grain sorghum to N fertilization under humid subtropical conditions of Pantnagar in India. In addition to the enhancement in flowering and maturity stages brought about by N application, it also resulted in increased plant dry weight, translocation coefficients, grain yield plant–1 and grain yield ha–1. Varietal differences existed with respect to their responses for yield and N uptake to N rates. Most of the entries responded up to 120 kg N ha–1. Hybrid CSH 5 utilized applied N more efficiently than other varieties.Publication No 1612 of GBPUA and T, Experiment Station, Pantnagar.  相似文献   

16.
We calculated the residual nitrogen (N) from agricultural production on national and regional scales in Japan for 1985, 1990, 1995, 2000, and 2005 and tested the suitability of the N concentrations applied in agricultural production systems using residual N and excess water as indicators of negative effects on groundwater. Chemical fertilizer application declined consistently during the period from 1985 to 2005, while the application of livestock manure peaked in 1990 and declined thereafter. Crop production remained relatively constant, and surplus N on farmland (total input minus total output of N) declined during this period. Although the disposal of excreta N increased, the residual N from agricultural production (surplus N plus disposal of excreta N) declined consistently during this period. However, this trend was not consistent at the regional level because residual N was largely affected by the movement of chemical fertilizer and livestock excreta, which varied with each farm and region. A comparison of residual N per farmland area in 1985 and 2005 indicated that regions were becoming bipolarized, i.e., certain regions exhibited reduced residual N while others exhibited the opposite trend, primarily due to an intensification of livestock production. A significant correlation was observed between residual N in excess water (precipitation minus potential evapotranspiration within the regions), and the percentage of observation wells exceeded >10 ppm of N from 2000 to 2005. Although this correlation had a large dispersion, residual N levels in excess water indicated the risk of water contamination by N.  相似文献   

17.
Melamine (2,4,6-triamino-1,3,5-triazine) and ammeline (4,6-diamino-1,3,5 triazine 2(1H)-one) were tested in a field study for N release characteristics, and response of Kentucky bluegrass to one and two applications of 98 kg N ha–1. Melamine was also evaluated in combination with urea in a granule and in a liquid suspension. Mineralization of N from melamine and ammeline was slow. Soil concentrations of NH4 and NO3 in the surface 7-cm were less than 5% of the total N applied after 56 days. Recovery of N in the tissue was 5 and 11% of added melamine-N and ammeline-N respectively, during four months of sampling. Poor overall turf quality and number of dates of unacceptable quality also reflected the low mineralization of N from melamine and ammeline. The addition of urea to melamine improved plant N uptake, yield and turf quality. However, after the initial response to the urea component, little evidence of N release from melamine was observed over a four month period.Paper No.10 597 of the Journal Series of the Purdue Experiment Station, W. Lafayette, IN 47907.  相似文献   

18.
Zinc deficiency may enhance B absorption and transport to such an extent that B may possibly accumulate to toxic levels in plant tops. Therefore, a screen house experiment was conducted to investigate the effect of B levels (0, 2.5, 5.0, 7.5 and 10 mg B kg–1 soil) as influenced by Zn levels (0, 10 and 20 mg Zn kg–1 soil) on DM yield of wheat tops and tissue concentration and uptake of B, Zn, Cu, Mn, Fe, Ca, Mg, K and P. Application of B decreased the dry matter yield of wheat significantly at all levels of Zn. Conversely, increasing levels of Zn increased the wheat yield significantly. The application of B increased the tissue concentration and uptake of B by wheat plants more in the absence than in the presence of Zn application. Consequently, concentration of B in wheat plants decreased with increasing levels of Zn application to the soil. This decrease in tissue B concentration was not only due to increased growth of wheat plants. Zinc application appears to have created a protective mechanism in the root cell environment against excessive uptake of B, as evidenced by the reduction of B uptake in Zn treated plants. The uptake of Mn, Mg and P decreased while the uptake of Cu, Fe, and K by wheat plants increased with Zn application. Whereas, the uptake of all nutrients (Cu, Fe, Mn, Ca, Mg, K and P) decreased significantly with the application of B. However, this depressive effect of B on nutrient uptake was less marked in the presence of applied Zn.  相似文献   

19.
Efficient and flexible management of nitrogen for rainfed lowland rice   总被引:2,自引:0,他引:2  
Nitrogen (N) is the most limiting nutrient in the rainfed lowland rice soils of Laos. Indigenous N supply of these soils was low, ranging from 12 to 64 kg N/ha and was correlated with soil organic matter content. Resource-poor farmers and erratic rainfall are characteristic features of Lao rainfed lowland rice systems. Such climatic and economic factors influence farmers' ability to apply N at the recommended time and therefore efficient and flexible recommendations are required. Research on N management focused on the timing of N applications. Splitting the N recommendation into three equal splits at transplanting, active tillering and panicle initiation increased yields by 12% compared to a single application at transplanting. Agronomic efficiency (AE = kg increase in grain yield/kg N applied) was further increased by 9 kg/kg N if a higher proportion of the N was applied during active tillering and panicle initiation when crop N demand is high. Under conditions of suboptimal N supply, the first N application can be applied from transplanting to 30 d after transplanting without lowering grain yield or AE (for medium duration varieties transplanted 1 month after sowing). The last N application can be made between two weeks before to one week after panicle initiation without lowering yield. These findings provide the basis for an efficient (AE of 20 to 25 kg/kg N) and flexible N management strategy for Lao rainfed lowland rice under conditions of suboptimal N supply.  相似文献   

20.
采用盆栽试验,研究3种增效氮肥(海藻寡糖尿素、腐植酸尿素、聚能网尿素)及其用量对玉米幼苗生长、光合特性及养分吸收的影响。结果显示,3种增效尿素对玉米幼苗生长的促进作用均好于普通尿素,且海藻寡糖尿素对玉米生长的综合促进效果最优;进一步研究显示,海藻寡糖尿素可提高玉米功能叶片叶绿素含量和净光合速率,还能促进玉米对氮、磷、钾的吸收,同等施氮条件下其施用效果优于其他2种增效氮肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号