首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria, there is considerable interest in better understanding of material properties that can limit bacterial adhesion and viability. Here we employ weak polyelectrolyte multilayer (PEM) thin films comprised of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA), assembled over a range of conditions, to explore the physicochemical and mechanical characteristics of material surfaces controlling adhesion of Staphylococcus epidermidis bacteria and subsequent colony growth. Although it is increasingly appreciated that eukaryotic cells possess subcellular structures and biomolecular pathways to sense and respond to local chemomechanical environments, much less is known about mechanoselective adhesion of prokaryotes such as these bacteria. We find that adhesion of viable S. epidermidis correlates positively with the stiffness of these polymeric substrata, independently of the roughness, interaction energy, and charge density of these materials. Quantitatively similar trends observed for wild-type and actin analogue mutant Escherichia coli suggest that these results are not confined to only specific bacterial strains, shapes, or cell envelope types. These results indicate the plausibility of mechanoselective adhesion mechanisms in prokaryotes and suggest that mechanical stiffness of substrata materials represents an additional parameter that can regulate adhesion of and subsequent colonization by viable bacteria.  相似文献   

2.
Although adhesion of bacteria and yeast have been extensively studied by a wide range of experimental and theoretical approaches, significantly less attention has been focused on microalgae adhesion to solid materials. This work is focused on physicochemical aspects of microalgae adhesion. The results are based on experimental characterization of surface properties of both microalgae and solids by contact angle and zeta potential measurements. These data are used in modeling the surface interactions (thermodynamic and colloidal models) resulting in quantitative prediction of the interaction intensities. Finally, the model predictions are compared with experimental adhesion tests of microalgae onto model solids in order to identify the physicochemical forces governing the microalgae–solid interaction. The model solids were prepared in order to cover a wide range of properties (hydrophobicity and surface charge). The results revealed that, in low ionic strength environment, the adhesion was influenced mostly by electrostatic attraction/repulsion between surfaces, while with increasing ionic strength grew the importance of apolar (hydrophobic) interactions. The impact of solid surface properties on the degree of colonization by microlagae was statistically more significant than the influence of medium composition on cell surface of Chlorella vulgaris.  相似文献   

3.
The objective of this communication is to develop a computer-based framework for the overall coupled phenomena leading to growth and rupture of atherosclerotic plaques. The modeling is purposely simplified to expose the dominant phenomenological controlling mechanisms, and their coupled interaction. The main ingredients of the present simplified modeling approach, describing the events that occur due to the presence and oxidation of excess low-density lipoprotein (LDL) in the intima, are: (i) adhesion of monocytes to the endothelial surface, which is controlled by the intensity of the blood flow and the adhesion molecules stimulated by the excess LDL, (ii) penetration of the monocytes into the intima and subsequent inflammation of the tissue, and (iii) rupture of the plaque accompanied with some degree of thrombus formation or even subsequent occlusive thrombosis. The set of resulting coupled equations, each modeling entirely different physical events, is solved using an iterative staggering scheme, which allows the equations to be solved in a computationally convenient decoupled fashion. Theoretical convergence properties of the scheme are given as a function of physical parameters involved. A numerical example is given to illustrate the modeling approach and an a priori prediction for time to rupture as a function of arterial geometry, diameter of the monocyte, adhesion stress, bulk modulus of the ruptured wall material, blood viscosity, flow rate and mass density of the monocytes.  相似文献   

4.
Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.  相似文献   

5.
Integrin-mediated adhesion is regulated by multiple features of the adhesive surface, including its chemical composition, topography, and physical properties. In this study we investigated integrin lateral clustering, as a mechanism to control integrin functions, by characterizing the effect of nanoscale variations in the spacing between adhesive RGD ligands on cell spreading, migration, and focal adhesion dynamics. For this purpose, we used nanopatterned surfaces, containing RGD-biofunctionalized gold dots, surrounded by passivated gaps. By varying the spacing between the dots, we modulated the clustering of the associated integrins. We show that cell-surface attachment is not sensitive to pattern density, whereas the formation of stable focal adhesions and persistent spreading is. Thus cells plated on a 108-nm-spaced pattern exhibit delayed spreading with repeated protrusion-retraction cycles compared to cells growing on a 58-nm pattern. Cell motility on these surfaces is erratic and nonpersistent, leaving thin membrane tethers bound to the RGD pattern. Dynamic molecular profiling indicated that the adhesion sites formed with the 108-nm pattern undergo rapid turnover and contain reduced levels of zyxin. These findings indicate that a critical RGD density is essential for the establishment of mature and stable integrin adhesions, which, in turn, induce efficient cell spreading and formation of focal adhesions.  相似文献   

6.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.Key words: cell adhesion, focal adhesion, steered molecular dynamics, finite element, chemomechanics, multiscale modeling, elasticity theory  相似文献   

7.
Prevention of bacterial adhesion   总被引:1,自引:0,他引:1  
Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation. As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future.  相似文献   

8.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum-level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.  相似文献   

9.
Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain, flow velocity and flow maximum principal shear stress was investigated.  相似文献   

10.
Biaxial testing, histological measurements and theoretical continuum mechanics modeling were employed to investigate the structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone (LCT). The results showed that geometry changes and collagen fiber angle distribution contribute to variations in mechanical properties in the LCT zone. A simple three-coefficient exponential constitutive law was able to simulate the variation in stress-stretch behavior in the LCT zone by spatially varying a single coefficient and incorporating collagen fiber angle and degree of alignment. This quantitative information can greatly improve the predictions from biomechanical valve models by incorporating regional variations of structure and properties in the mitral leaflet-chordae tendineae system. These data provide the foundation for a computational model for studying stress distributions before and following chordal rupture, which may indicate the underlying reasons for the development of valve insufficiency in patients.  相似文献   

11.
Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion.  相似文献   

12.
Mathematical modeling is an important tool to assessing quantitative conjectures and to answer specific questions. In the modeling, we assume that a competitor represented by a lactic acid bacterium produces antimicrobial compounds (substances that kill microorganisms or inhibit their growth), such as lactic acid and bacteriocins, with some cost to its own growth. Bacteriocins are protein compounds with antimicrobial effect against related species and bacteria such as Listeria monocytogenes, which is foodborne pathogen that cause listeriosis. From the analysis of the model, we found the thresholds which determine the existence of multiple equilibria and we studied their stability, in order to evaluate the interaction between lactic acid bacteria and L. monocytogenes.  相似文献   

13.
Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface.  相似文献   

14.
In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a ‘nutritional override’ system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.  相似文献   

15.
Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated for two strains of Enterococcus faecalis, isolated from clogged biliary stents. Chitosan coatings covalently grafted or applied as chitosan/kappa-carrageenan multilayers were characterized by ellipsometry, scanning force microscopy (SFM), X-ray photoelectron spectroscopy (XPS), and electrokinetic measurements. Decreases in initial bacterial deposition rates and the number of bacteria adhering in a more advanced state of the adhesion process were observed on both types of modified surfaces, with more pronounced effects on highly hydrated multilayers. Adhesion of negatively charged enterococci was slightly enhanced on chitosan-terminated multilayers, but antibacterial effect was absent on kappa-carrageenan-terminated multilayers. Thus, the efficacy of multilayers remains an interesting interplay between the promoting effect of cationically charged groups on adhesion of negatively charged bacteria and, on the other hand, their antibacterial effects.  相似文献   

16.
Inactivation of biofilm bacteria.   总被引:20,自引:14,他引:6       下载免费PDF全文
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

17.
Inactivation of biofilm bacteria   总被引:18,自引:0,他引:18  
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

18.
Bacterial adhesion on biomaterial surfaces is the initial step in establishing infections and leads to the formation of biofilms. In this study, silicone was modified with different biopolymers and silanes, including: heparin, hyaluronan, and self-assembled octadecyltrichlorosilane (OTS), and fluoroalkylsilane (FAS). The aim was to provide a stable and bacteria-resistant surface by varying the degree of hydrophobicity and the surface structure. The adhesion of Escherichia coli (JM 109) on different modified silicone surfaces was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mica, an ideal hydrophilic and smooth surface, was employed as a control specimen to study the effect of hydrophobicity and surfaces roughness on bacterial adhesion. AFM probes were coated with E. coli and the force measurements between the bacteria-immobilized tip and various materials surfaces were obtained while approaching to and retracting from the surfaces. A short-range repulsive force was observed between the FAS coated silicone and bacteria. The pull-off force of bacteria to FAS was the smallest among coated surfaces. On the other hand, heparin exhibited a long-range attractive force during approach and required a higher pull-off force in retraction. Both AFM and SEM results indicated that FAS reduced bacterial adhesion whereas heparin enhanced the adhesion compared to pure silicone. The work demonstrates that hydrophobicity cannot be used as a criterion to predict bacterial adhesion. Rather, both the native properties of the individual strain of bacteria and the specific functional structure of the surfaces determine the strength of force interaction, and thus the extent of adhesion.  相似文献   

19.
20.
Machado I  Graça J  Sousa AM  Lopes SP  Pereira MO 《Biofouling》2011,27(10):1151-1159
Antimicrobial residue deposition can change the physico-chemical properties of bacteria and surfaces and thus promote or impair bacterial adhesion. This study focuses on benzalkonium chloride (BC) deposition on polystyrene (PS) surfaces and the influence of this conditioning film on the physico-chemical properties of PS and on early adhesion and biofilm formation by Pseudomonas aeruginosa wild-type and its laboratory BC-adapted strain. The latter readily acquired the ability to grow in BC, and also exhibited physico-chemical surface changes. The existence of residues on PS surfaces altered their hydrophobicity and favoured adhesion as determined by the free energy and early adhesion characterization. Adapted bacteria revealed a higher ability to adhere to surfaces and to develop biofilms, especially on BC-conditioned surfaces, which thereby could enhance resistance to sanitation attempts. These findings highlight the importance of investigations concerning the antimicrobial deposition effect after cleaning procedures, which may encourage bacterial adhesion, especially of bacteria that have been previously exposed to chemical stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号