首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Magnetite nanoparticles (Fe3O4 NPs) with peroxide-containing polymer shell have been synthesized using the method of coprecipitation from the mixture solutions of Fe (II) and Fe (III) salts in the presence of peroxide-containing copolymer (PCC). Polymer shell presence has been proved by elemental and complex thermal analysis. Synthesized Fe3O4 NPs possess superparamagnetic properties. Their specific saturation magnetization decreases gradually from 65 to 54 A·m2·kg−1 with increasing PCC concentration owing to the surface spin pinning effect caused by a polymer shell. The average sizes of Fe3O4 NPs estimated from the data of XRD analysis and magnetic measurements are in the range of 9–12 nm. The NP sizes determined by the DLS method lie in the range of 150–270 nm; this result is significantly larger than the sizes estimated by the two aforementioned methods evidencing a tendency for Fe3O4 NPs toward self-association. Cross-linked composite films based on polyvinyl alcohol have been obtained via radical curing initiated by the PCC shell of nanoparticles. The resulting composite films are magnetically sensitive films with rather high physico-mechanical properties (tensile strength reaches 48–67 MPa and relative elongation – 4%–21% depending on cross-linking degree), a priori non-toxic and biocompatible, which makes them promising materials for various applications.  相似文献   

2.
Fe3O4 nanoparticles (Fe3O4NPs) were prepared by chemical coprecipitation. Deep eutectic solvents (DESs) (ChCl/glycol, 1/2, n/n) were used to modify Fe3O4NPs. The obtained Fe3O4NPs and DESs–Fe3O4NPs were applied for purification of ferulic acid from wheat bran by magnetic solid-phase extraction (MSPE). The satisfactory extraction recoveries for ferulic acid (88.7%) were obtained by changing different washing and eluted solvents. The recovery of the proposed method at three spiked level analysis was 77.9–97.5%, with the relative standard deviation less than 4.5%. DESs–Fe3O4NPs showed good performance for ferulic acid and the proposed approach might offer a novel method for purifying complex samples.  相似文献   

3.
We report here a simple, efficient, practical, and novel method for the preparation of Fe3O4 nanoparticles (NPs)/CdS nanowires. The CdS nanowire/Fe3O4 NP reported here was characterized by transmission electron microscopy (TEM), X-ray Diffraction (XRD), vibrating sample magnetometer (VSM), and energy-dispersive X-ray. Cadmium diethyl dithiophosphate has been used as a 3 in 1 precursor (cadmium, sulfur, and ligand source) for the synthesis of high-quality one-dimensional Fe3O4 NPs/CdS nanowires using a simple hydrothermal method in the presence of Fe3O4 NPs in water. Photocatalytic activity studies show that the nanocomposite has good photocatalytic activity toward the photodegradation of methylene blue in an aqueous solution.  相似文献   

4.
Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.  相似文献   

5.
We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging.  相似文献   

6.
Heparin has been conjugated to Fe3O4, Co3O4, and NiO nanoparticles (NPs) through electrostatic interactions, producing colloidal suspensions of hybrid metal oxide heparin NPs that are stable in water. Negative zeta potentials and retention of heparin’s ability to capture toluidine blue indicate that heparin’s negative charges are exposed on the surface of the coated NPs. IR results confirmed the formation of nanohybrids as did NMR experiments, which were also interpreted on the basis of toluidine blue tests. Transmission electron microscopy results revealed that the heparin coating does not modify the shape or dimension of the NPs. Dynamic light scattering and negative zeta potential measurements confirmed that heparin surface functionalisation is an effective strategy to prevent NP aggregation.  相似文献   

7.
A Fe3O4 nonaparticles coated with acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid copolymer(Fe3O4-Polymer NPs) was synthesized by emulsion polymerization. The structure of Fe3O4-Polymer NPs was then characterized by infrared spectroscopy, thermo-gravimetric analysis, and scanning electron microscopy. Meanwhile, the rheological properties of Fe3O4-Polymer NPs solution were systematically studied. The results showed that when dosage of hydrophobic Fe3O4-Oleic NPs is 10%, the synthesized Fe3O4-Polymer NPs was with the best viscosity enhancement performance, and the maximum saturation magnetization could reach to 20.0 emu/g. The apparent viscosity value of 5000 mg/L magnetic nano-composite solution was 154.6 mPa·s at 30°C. It shows strong viscosity enhancement ability and good temperature performance. Hence, it has great application potential in well stimulation of medium and high temperature oil and gas reservoirs.  相似文献   

8.
Zhu G  Su F  Lv T  Pan L  Sun Z 《Nanoscale research letters》2010,5(11):1749-1754
Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs) as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%). The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.  相似文献   

9.
Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.  相似文献   

10.
In this paper, we investigated the functional imaging properties of magnetic microspheres composed of magnetic core and CdTe quantum dots in the silica shell functionalized with folic acid (FA). The preparation procedure included the preparation of chitosan-coated Fe3O4 nanoparticles (CS-coated Fe3O4 NPs) prepared by a one-pot solvothermal method, the reaction between carboxylic and amino groups under activation of NHS and EDC in order to obtain the CdTe-CS-coated Fe3O4 NPs, and finally the growth of SiO2 shell vent the photoluminescence (PL) quenching via a Stöber method (Fe3O4-CdTe@SiO2). Moreover, in order to have a specific targeting capacity, the magnetic and fluorescent bifunctional microspheres were synthesized by bonding of SiO2 shell with FA molecules via amide reaction (Fe3O4-CdTe@SiO2-FA). The morphology, size, chemical components, and magnetic property of as-prepared composite nanoparticles were characterized by ultraviolet-visible spectroscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning transmission electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM), respectively. The results show that the magnetic and fluorescent bifunctional microspheres have strong luminescent which will be employed for immuno-labeling and fluorescent imaging of HeLa cells.  相似文献   

11.
In this study, carboxylic acid coated iron oxide nanoparticles (CA‐Fe3O4 NPs) were applied to Nylon 6 nanomembranes by three different techniques: (1) simultaneous electrospinning/electrospraying, (2) layer‐by‐layer (LbL) assembly, and (3) chemical grafting. These membranes have potential use toward clean‐up of polluted rivers due to the multi‐functional properties of the NPs. However, it is critical to evaluate particle retention and stability on fibers to reduce human health and environmental concerns. This study evaluates the NP treatment uniformity, and particle retention of the membranes based on knowledge of the preparation process. Electron microscopy and CIELAB spectrophotometry revealed that the NPs were uniformly dispersed via the electrospun/electrosprayed and grafted methods while non‐uniformity was observed on LbL treated membranes. The membranes were washed in solutions of various pH levels (pH = 4, 7, 10) to investigate NP release and retention. Inductively coupled plasma‐atomic emission spectroscopy results indicate particle release is driven by pH‐dependent, bonding interactions between the NPs and the Nylon 6 fibers. Over 97% of NPs were retained on all treated membranes after washing for 60 min. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42657.  相似文献   

12.
Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects of TiO2 and SiO2 NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin-film nanocomposite (TFN) PA membranes were fabricated using similarly sized TiO2 15 nm and SiO2 (10 – 20 nm) NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition of TiO2 and SiO2 , respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4 and NaCl ) and OM (humic acid [HA] and tannic acid [TA]). The addition of TiO2 and SiO2 nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection of MgSO4 , especially for TiO2 membranes. The addition of TiO2 and SiO2 to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.  相似文献   

13.
《Ceramics International》2017,43(9):7311-7320
A facile ultrasonic method has been successfully developed for the fabrication of multifunctional Fe3O4@carbon dot/Ag (Fe3O4@C-dot/Ag) nanocubes (NCs), and the resulting materials are well characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Vibrating sample magnetometer (VSM) and fluorescence measurements. The Ag nanoparticles (NPs) are uniform and well dispersed on the surface of Fe3O4@C-dot, while maintaining the shape and the size of the core-shell Fe3O4@C-dot NCs. In addition, its catalytic activities are evaluated by measuring the reduction of p-nitroaniline (p-NA) and crystal violet (CV), and the composite materials exhibit excellent catalytic activity towards reduction of p-NA and CV dye, which is superior to most reported catalysts. The good catalytic performance of Fe3O4@C-dot/Ag NCs may be attributed to the specific characteristics of its nanostructure and the synergistic effect on the delivery of electrons between Ag NPs and Fe3O4@C-dot NCs. Furthermore, the as-prepared catalysts also show good activity for the reduction of other nitrobenzene analogs. The effect of solvent and reducing agent was also studied on the catalytic activity of Fe3O4@C-dot/Ag NCs. Most importantly, the Fe3O4@C-dot/Ag catalyst shows excellent recycling stabilities, which can be potentially applied in the fields of catalysis and green chemistry.  相似文献   

14.
Magnetic polyaniline (PANI) polymer nanocomposites (PNCs) reinforced with magnetite (Fe3O4) nanoparticles (NPs) have been successfully synthesized using a facile surface initiated polymerization (SIP) method. The chemical structures of the PANI/Fe3O4 PNCs are characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the PANI/Fe3O4 PNCs is performed by thermogravimetric analysis (TGA). Both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used to characterize the morphologies of the PANI, Fe3O4 nanoparticles (NPs) and the PNCs. X-ray diffraction (XRD) shows a significant effect of the Fe3O4 NPs on the crystallization structure of the formed PANI. The dielectrical properties of these PNCs are strongly related to the Fe3O4 nanoparticle loadings and unique negative permittivity is observed in all the samples. Temperature dependent resistivity analysis from 50 to 290 K reveals a quasi 3-dimension variable range hopping (VRH) electron conduction mechanism for the nanocomposite samples. The PNCs do not show hysteresis loop with zero coercivity, indicating the superparamagnetic behavior at room temperature. The PNCs with 30 wt% Fe3O4 NP loading exhibit a larger positive magnetoresistance (MR = 95%) than 53% of the pure PANI.  相似文献   

15.
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.  相似文献   

16.
We demonstrate a facile synthesis of monodisperse magnetite (Fe3O4) nanoparticles (NPs) via a simple wet chemical route at 180°C using oleylamine (C18H37N), which serves as a solvent, ligand, and surfactant. The particles have a narrow size distribution centered at about 10 nm. To provide better electron conductivity and structural stability, the as‐synthesized particles are given a carbon nanocoating by pyrolysis of the residual surfactant on their surface. This pyrolysis forms a uniform thin nanocoating on each particle, and a core/shell Fe3O4/carbon NP network was thus obtained. The core/shell Fe3O4/carbon electrode shows better reversible capacity, cycle life, and rate capability than a bare Fe3O4 NP electrode because of its efficient electron transport and stress relaxation provided by the thin carbon layer.  相似文献   

17.
《Ceramics International》2016,42(8):9387-9395
Uniformly dispersed Au nanoparticles (NPs) deposited on the surface of highly ordered TiO2 nanotube arrays (Au/TiO2 NTs) were synthesized through a two-step process including anodization method and microwave-assisted chemical reduction route. The investigation indicated that Au NPs grew uniformly on the walls of TiO2 NTs. Au/TiO2 NTs exhibited excellent visible light absorption due to the LSPR effect of Au NPs. Au/TiO2 NTs exhibited much higher photocurrent density and the photoconversion efficiency of Au decorated TiO2 NTs was about 2.05 times greater than that of bare TiO2 NTs. Besides, the PL intensity of Au/TiO2 NTs was much lower than that of TiO2 NTs, revealing a decrease in charge carrier recombination. The prepared Au/TiO2 NTs exhibited superior photoelectrocatalytic activity and stability in the degradation of MB under simulated solar light irradiation. The synergy effect between nanotubular structures of TiO2 and uniformly dispersed Au nanoparticles, as well as the small bias potential and strong interaction between Au and TiO2, facilitated the Au plasmon-induced charge separation and transfer, which lead to highly efficient and stable photoelectrocatalytic activity.  相似文献   

18.
Multifunctional materials have received considerable attention as they could integrate different functional components in one-single platform. In this study, novel chitosan/Fe3O4/TiO2@TiO2 nanowire (NW) microspheres having extracellular matrix-like fibrous surface and photothermal antibacterial property were synthesized through in situ hydrothermal growth of TiO2 NWs on chitosan/Fe3O4/TiO2 microspheres. It is found that the microspheres were spherical in morphology with a diameter of 100–300 µm and exhibited a hierarchical and nanofibrous feature. Their surface was mainly constructed by numerous TiO2 NWs with a diameter of 20– 30nm. In vitro biological evaluation indicates that the chitosan/Fe3O4/TiO2@TiO2 NW microspheres significantly enhanced attachment and proliferation of human umbilical vein endothelial cells compared with chitosan/Fe3O4/TiO2 nanocomposite microspheres due to the presence of nanofibrous surface. Moreover, the microspheres showed photothermal antibacterial property to inhibit the growth of bacteria due to the presence of Fe3O4 component.  相似文献   

19.
In this paper, we attempted to synthesize a hybrid nanostructure by the incorporation of Au nanoparticles (NPs) with polymer-coated Fe3O4 microspheres. Also, Au NPs on 3-aminopropyl triethylsilane (APTS)-modified Fe3O4@SiO2 and Fe3O4@polymer microspheres were synthesized to assess the catalytic activity of Au NPs on Fe3O4@polymer microspheres for the reduction of 4-nitrophenol. It was found that Au NPs on Fe3O4@polymer catalysts showed higher catalytic activity and recyclability than other APTS-modified catalysts.  相似文献   

20.
Metal ferrite nanoparticles (NPs) attracted much attention due to their superparamagnetic, catalytic properties and surface area to volume ratio. Among these spinel ferrite NPs have shown immense potential in nanomedicine. The objective of present research work was the synthesis of chromium-substituted spinel copper ferrite NPs [(CuCrxFe2?xO4 (0.0?≤?x?≤?1.0)] by coprecipitation method and characterization of their antibacterial activity against E. coli. The synthesized ferrite NPs were characterized by X-ray diffraction, FT-IR, UV- Vis diffuse reflectance, SEM, Brunauer-Emmett-Teller (BET) and Barrett–Joyner–Halenda (BJH) techniques. XRD analysis confirmed that the all the samples were cubic spinel in structure with crystal size of 43.3–20.2 nm. It has been found that as the amount of dopant (Cr) increases, size of the NPs decreased. The Eg values were found in the range of 1.20–1.80 eV for CuCrxFe2???xO4 (0.0?≤?x?≤?1.0) NPs as analyzed by UV–Visible diffuse reflectance spectroscopy. The BET surface area of Cr-substituted ferrite NPs decreases as Cr content increased while the pore diameter increases when moved from CuFe2O4 to CuCrFeO2 analyzed by BJH. The antibacterial activity increases as the concentration of dopant (Cr) increased. It has been found that CuCrxFe2?xO4 NPs inhibit bacterial growth in a size dependent manner i.e., small size NPs (CuCrxFe2?xO4; 20.2 nm; x?=?1.0) exhibit strong antibacterial activity (MIC; 2.5 mg/ml), whereas large size NPs (CuCrxFe2?xO4; 43.3 nm; x?=?0.0) inhibit bacterial growth at concentration of more 16 mg/ml. SEM micrograph shows that CuCrxFe2?xO4 NPs get adhered to bacterial cell surfaces and damaged the cell membrane due to interaction between NPs and cell membrane. Cells treated with CuCrxFe2?xO4 NPs were irregular and abnormal in shape with distorted cell membrane. CuCrxFe2?xO4 NPs severely damaged E. coli cells might be because of formation of pits, indentation, deformation and distortion of cell wall and membrane, indicating significant loss of membrane integrity that may lead to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号