首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of this study were to evaluate the functional properties of immunocompetent cells in dairy cows fed diets enriched in n-3 or n-6 polyunsaturated fatty acids during the transition period. Six weeks before calving, 21 primiparous and 27 multiparous pregnant Holstein dairy cows were randomly allotted to 1 of 3 dietary fat treatments: calcium salts of palm oil (Megalac), micronized soybeans, or whole flaxseed, which are, respectively, rich in saturated, n-6, or n-3 fatty acids. On wk 6 and 3 before parturition, cows received a subcutaneous injection of ovalbumin to measure the antibody response in colostrum and serum. Colostrum samples were collected at the first milking after calving, and blood samples were taken 6, 3, and 1 wk before the expected calving date and 1, 3, and 6 wk after calving. Blood mononuclear cells were cultured to evaluate the proliferative response to concanavalin A and the in vitro productions of interferon-gamma, tumor necrosis factor-alpha, nitric oxide, and prostaglandin E2. The serum antibody response to ovalbumin was unaffected by dietary fatty acids, but the response was lower in primiparous cows than in multiparous cows. A significant diet x parity interaction indicated that colostral antibody level against ovalbumin was significantly higher in multiparous cows fed soybeans than in those fed flaxseed or Megalac; there was no difference among treatments for primiparous cows. The lymphocyte response to concanavalin A was lower in cows fed soybeans than in those receiving flaxseed or Megalac when the cells were incubated with autologous serum. The proliferative response of mononuclear cells incubated with autologous serum was suppressed in the 1st wk after calving in both primiparous and multiparous cows, and multiparous cows showed a higher response than primiparous cows throughout the experiment. There was a significant interaction between parity and diet as a result of a greater production of interferon-gamma by mononuclear cells incubated with autologous serum in multiparous cows than in primiparous cows fed flaxseed; there was no difference among cows fed the other diets. Interferon-gamma production was reduced around calving while the inverse was observed for productions of nitric oxide and tumor necrosis factor-alpha. Productions of nitric oxide, prostaglandin E2, and tumor necrosis factor-gamma were greater in primiparous cows than in multiparous cows. In conclusion, functional properties of lymphocytes and monocyte/macrophage lineage of dairy cows during the transition period are modulated by parturition and the composition of polyunsaturated fatty acids in the diet.  相似文献   

2.
The objective of this study was to estimate genetic parameters for grass dry matter intake (DMI), energy balance (EB), and cow internal digestibility (IDG) in grazing Holstein-Friesian dairy cows. Grass DMI was estimated up to 4 times per lactation on 1,588 lactations from 755 cows on 2 research farms in southern Ireland. Simultaneously measured milk production and BW records were used to calculate EB. Cow IDG, measured as the ratio of feed and fecal concentrations of the natural odd carbon-chain n-alkane pentatriacontane, was available on 583 lactations from 238 cows. Random regression and multitrait animal models were used to estimate residual, additive genetic and permanent environmental (co)variances across lactations. Results were similar for both models. Heritability for DMI, EB, and IDG across lactation varied from 0.10 [8 days in milk (DIM)] to 0.30 (169 DIM), from 0.06 (29 DIM) to 0.29 (305 DIM), and from 0.08 (50 DIM) to 0.45 (305 DIM), respectively, when estimated using the random regression model. Genetic correlations within each trait tended to decrease as the interval between periods compared increased for DMI and EB, whereas the correlations with IDG in early lactation were weakest when measured midlactation. The lowest correlation between any 2 periods was 0.10, −0.36, and −0.04 for DMI, EB, and IDG, respectively, suggesting the effect of different genes at different stages of lactations. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix revealed considerable genetic variation among animals in the shape of the lactation profiles for DMI, EB, and IDG. Genetic parameters presented are the first estimates from dairy cows fed predominantly grazed grass and imply that genetic improvement in DMI, EB, and IDG in Holstein-Friesian cows fed predominantly grazed grass is possible.  相似文献   

3.
The primary objective of this study was to evaluate the effect on dry matter intake (DMI), milk yield, milk composition, body weight (BW), and body condition score (BCS) change of cows offered diets differing in energy density in the last 4 wk of gestation and in the first 8 wk of lactation. Three diets (grass silage:straw, 75:25 on a dry matter basis (SS), grass silage (S), and grass silage + 3 kg concentrate daily (C)) precalving, and two diets (4 kg [LC] or 8 kg [HC] concentrate daily + grass silage ad libitum) postcalving were combined in a 3 x 2 factorial design. Sixty Holstein-Friesian cows entering their second lactation were blocked according to expected calving date and BCS into groups of six and were then allocated at random to the treatments. Individual feeding started 4 wk prior to the expected calving date and measurements were made until the end of the 8th wk of lactation. Mean DMI differed between each of the precalving treatments (7.4, 8.1, and 9.9 kg/d for SS, S, and C, respectively) in the precalving period. The DMI also differed between SS and C for wk 1 to 8 (13.5 and 14.2 kg/d) postcalving. Postcalving, milk (24.2, 26.2, and 28.2 kg/d), fat (933, 1063, and 1171 g/d), and protein (736, 797, and 874 g/d) yields differed between SS, S, and C, respectively. The BCS changes differed between SS and C (-0.09 and 0.12 of a BCS) in the precalving period and between SS and S compared with C (0.02, 0.06, and -0.26 of a BCS) for wk 1 to 8 postcalving. The BW change differed between SS and S compared with C in both wk 1 to 4 (-0.23, -0.37, and -1.25 kg/d) and wk 1 to 8 (0.18, 0.10, and -0.58 kg/ d) postcalving. The BW and BCS were lower at calving for cows on SS compared with C. The greater amount of concentrate supplement postcalving increased DMI, yields of milk, fat, and protein and decreased BW loss in the first 8 wk of lactation. In conclusion, these results indicate that a greater energy density diet in the final 4 wk of the dry period improves cow production in early lactation.  相似文献   

4.
The focus of modern dairy cow breeding programs has shifted from being mainly yield based toward balanced goals that increasingly consider functional traits such as fertility, metabolic stability, and longevity. To improve these traits, a less pronounced energy deficit postpartum is considered a key challenge. On the other hand, feed efficiency and methane emissions are gaining importance, possibly leading to conflicts in the design of breeding goals. Dry matter intake (DMI) is one of the major determinants of energy balance (EB), and recently some efforts were undertaken to include DMI in genomic breeding programs. However, there is not yet a consensus on how this should be achieved as there are different goals in the course of lactation (i.e., reducing energy deficit postpartum vs. subsequently improving feed efficiency). Thus, the aim of this study was to gain more insight into the genetic architecture of energy metabolism across lactation by genetically dissecting EB and its major determinants DMI and energy-corrected milk (ECM) yield at different lactation stages applying random regression methodology and univariate and multivariate genomic analyses to data from 1,174 primiparous Holstein cows. Daily heritability estimates ranged from 0.29 to 0.49, 0.26 to 0.37, and 0.58 to 0.68 for EB, DMI, and ECM, respectively, across the first 180 d in milk (DIM). Genetic correlations between ECM and DMI were positive, ranging from 0.09 (DIM 11) to 0.36 (DIM 180). However, ECM and EB were negatively correlated (rg = ?0.26 to ?0.59). The strongest relationship was found at the onset of lactation, indicating that selection for increased milk yield at this stage will result in a more severe energy deficit postpartum. The results also indicate that EB is more affected by DMI (rg = 0.71 to 0.81) than by its other major determinant, ECM. Thus, breeding for a higher DMI in early lactation seems to be a promising strategy to improve the energy status of dairy cows. We found evidence that genetic regulation of energy homeostasis is complex, with trait- and lactation stage-specific quantitative trait loci suggesting that the trajectories of the analyzed traits can be optimized as mentioned above. Especially from the multivariate genomic analyses, we were able to draw some conclusions on the mechanisms involved and identified the genes encoding fumarate hydratase and adiponectin as highly promising candidates for EB, which will be further analyzed.  相似文献   

5.
Dairy cow efficiency is increasingly important for future breeding decisions. The efficiency is determined mostly by dry matter intake (DMI). Reducing DMI seems to increase efficiency if milk yield remains the same, but resulting negative energy balance (EB) may cause health problems, especially in early lactation. Objectives of this study were to examine relationships between DMI and liability to diseases. Therefore, cow effects for DMI and EB were correlated with cow effects for 4 disease categories throughout lactation. Disease categories were mastitis, claw and leg diseases, metabolic diseases, and all diseases. In addition, this study presents relative percentages of diseased cows per days in milk (DIM), repeatability, and cow effect correlations for disease categories across DIM. A total of 1,370 German Holstein (GH) and 287 Fleckvieh (FV) primiparous and multiparous dairy cows from 12 dairy research farms in Germany were observed over a period of 2 yr. Farm staff and veterinarians recorded health data. We modeled health and production data with threshold random regression models and linear random regression models. From DIM 2 to 305 average daily DMI was 22.1 kg/d in GH and 20.2 kg/d in FV. Average weekly EB was 2.8 MJ of NEL/d in GH and 0.6 MJ of NEL/d in FV. Most diseases occurred in the first 20 DIM. Multiparous cows were more susceptible to diseases than primiparous cows. Relative percentages of diseased cows were highest for claw and leg diseases, followed by metabolic diseases and mastitis. Repeatability of disease categories and production traits was moderate to high. Cow effect correlations for disease categories were higher for adjacent lactation stages than for more distant lactation stages. Pearson correlation coefficients between cow effects for DMI, as well as EB, and disease categories were estimated from DIM 2 to 305. Almost all correlations were negative in GH, especially in early lactation. In FV, the course of correlations was similar to GH, but correlations were mostly more negative in early lactation. For the first 20 DIM, correlations ranged from ?0.31 to 0.00 in GH and from ?0.42 to ?0.01 in FV. The results illustrate that future breeding for dairy cow efficiency should focus on DMI and EB in early lactation to avoid health problems.  相似文献   

6.
To determine the optimum feeding level of fatty acids of palm oil (PALM; Energizer RP10; 86.6% palmitic acid) on milk production, lactating cows (n = 18) were randomly assigned to a treatment sequence in replicated 4 × 4 Latin squares. Animals were assigned to squares by parity (3 multiparous and 1 primiparous squares with primiparous in the incomplete square). The 4 diets were designed to provide 0, 500, 1,000, and 1,500 g of PALM per day. Cows were fed individually with feed intake measured daily. Each period lasted 16 d with milk production and composition determined the final 2 d. Milk production, milk composition and feed intake data were analyzed using the MIXED procedure of SAS. Milk yields were 30.9, 34.0, 34.2, and 34.2 kg/ d (SEM = 1.9) for the 0, 500, 1,000, and 1,500 g levels, respectively. Milk yield was increased by the addition of PALM; however, there were no differences among the levels of PALM. Milk fat percentage was also increased from 3.44% for 0 g to 3.95% (SEM = 0.17) across all levels of PALM but there were no differences among the PALM treatments. Dry matter intakes were 23.3, 26.4, 24.7, and 23.8 kg/d (SEM = 1.4) for the 0, 500, 1,000 and 1,500 g levels, respectively. The addition of PALM increased milk yield and milk fat percentage, and no adverse effects on dry matter intake were observed.  相似文献   

7.
The objective of this experiment was to study dry matter intake (DMI), body condition, milk yield, and milk composition in cows with different body condition at the time of parturition. Twenty four multiparous cows with genetic merit for high or low milk fat content were assigned to one of three diets during the dry period. The treatments consisted of 6, 9, or 14.5 kg dry matter of a total mixed ration providing 71, 106, or 177 MJ/d of metabolizable energy and are referred to as low (L), medium (M), and high (H) dry period rations, respectively. These diets were introduced when the cows were dried off from the previous lactation, at least 8 wk before expected parturition. After parturition all cows were fed another total mixed ration ad libitum. The dietary treatments generated differences between the groups in body weight as well as in body condition score at parturition. There were no differences in DMI in early lactation, but during wk 6 to 12 DMI was lower among H cows, which was linked to a prolonged negative energy balance in this group. The milk yield was 38.5 +/- 0.8 kg of energy-corrected milk the first 4 wk postpartum and did not differ between treatments or selection lines. Body weight loss mainly occurred in lactation wk 1 to 4 and was greatest in H cows. The mobilization of body tissues was reflected in a higher milk fat content of C18:0 for the H cows during wk 1 to 4. There were no marked effects of treatments on milk fat content or milk protein content, which indicates that cows in early lactation have a potential to compensate for low nutrient intake during the dry period if they are offered a high-quality diet. The observed differences between treatments in DMI wk 6 to 12 could not be explained by differences in milk yield or mobilization of body tissues. Milk fat content was 4.7% in cows with genetic merit for high milk fat content and 4.2% in cows with genetic merit for low milk fat content. There was a tendency for higher body weight in cows with genetic merit for low milk fat content throughout the experiment.  相似文献   

8.
The objective of the experiment was to quantify the effect of stocking rate (SR) and animal genotype on milk production, dry matter intake (DMI), energy balance, and production efficiency across 2 consecutive grazing seasons (2014 and 2015). A total of 753 records from 177 dairy cows were available for analysis: 68 Holstein-Friesian and 71 Jersey × Holstein-Friesian (JxHF) cows each year of the experiment under a pasture-based seasonal production system. Animals within each breed group were randomly allocated to 1 of 3 whole-farm SR treatments defined in terms of body weight per hectare (kg of body weight/ha): low (1,200 kg of body weight/ha), medium (1,400 kg of body weight/ha), and high (1,600 kg of body weight/ha), and animals remained in the same SR treatments for the duration of the experiment. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique: March (spring), June (summer), and September (autumn), corresponding to 45, 111, and 209 d in milk, respectively. The effects of SR, animal genotype, season, and their interactions were analyzed using mixed models. Milk production, body weight, and production efficiency per cow decreased significantly as SR increased due to reduced herbage availability per cow and increased grazing severity. As a percentage of body weight, JxHF cows had higher feed conversion efficiency, higher DMI and milk solids (i.e., kg of fat + kg of protein) production, and also required less energy intake to produce 1 kg of milk solids. The increased production efficiency of JxHF cows at a similar body weight per hectare in the current analysis suggests that factors other than individual cow body weight contribute to the improved efficiency within intensive grazing systems. The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based milk production systems at higher SR where feed availability is restricted.  相似文献   

9.
《Journal of dairy science》2022,105(8):6616-6627
The objective of this experiment was to compare the effects of calcareous marine algae (CMA; Acid Buf, Celtic Sea Minerals) with a limestone-based control on feed intake, milk production, energy balance, serum mineral metabolites, and inflammatory markers in transition dairy cows. Twenty-two multiparous and 10 primiparous cows were assigned to 2 treatments from 25 d before expected parturition until 42 d postpartum. Cows were assigned to treatment according to a randomized complete block design based on parity, pre-experimental body condition score, previous 305-d milk yield, and either fat + protein yield (for multiparous cows) or predicted transmitting ability for milk yield and fat + protein yield (for primiparous cows). Cows were fed a negative dietary cation-anion difference [?50 mEq/kg] total mixed ration (TMR) based on corn silage, grass silage, and straw during the prepartum period and a 50:50 forage:concentrate TMR based on grass silage, corn silage, and concentrate during the postpartum period. The 2 dietary treatments consisted of a control (CON), which contained limestone as the primary calcium source, and CMA, in which limestone was replaced by CMA at 0.42% and 0.47% of dry matter for the pre- and postpartum periods, respectively. The dietary treatments were fed as 2 different concentrate pellets added to the TMR. Cows fed the CMA diet had higher dry matter intake in both the prepartum (+1.08 kg) and postpartum (+0.94 kg) periods compared with cows fed the CON diet. Fat yield (+0.11 kg), fat concentration (+0.43%), and 4% fat-corrected milk (+1.56 kg) were higher in cows fed CMA than in cows fed CON. The concentration of plasma serum amyloid A was reduced and that of serum P was increased on the CMA treatment compared with the CON treatment. These findings demonstrate the benefits of supplementing CMA to dairy cows during the transition period compared with a CON treatment containing limestone as the primary Ca source.  相似文献   

10.
The objective was to determine if the reduction in dry matter (DM) intake of acidogenic diets is mediated by inclusion of acidogenic products, content of salts containing Cl, or changes in acid-base status. The hypothesis was that a decrease in intake is mediated by metabolic acidosis. Ten primigravid Holstein cows at 148 ± 8 d of gestation were used in a duplicated 5 × 5 Latin square design. The dietary cation-anion difference (DCAD) of diets and acid-base status of cows were manipulated by incorporating an acidogenic product or by adding salts containing Cl, Na, and K to the diets. Treatments were a base diet (T1; 1.42% K, 0.04% Na, 0.26% Cl; DCAD = 196 mEq/kg); the base diet with added 1% NaCl and 1% KCl (T2; 1.83% K, 0.42% Na, 1.23% Cl; DCAD = 194 mEq/kg); the base diet with added 7.5% acidogenic product, 1.5% NaHCO3, and 1% K2CO3 (T3; 1.71% K, 0.54% Na, 0.89% Cl; DCAD = 192 mEq/kg); the base diet with added 7.5% acidogenic product (T4; 1.29% K, 0.13% Na, 0.91% Cl; DCAD = ?114 mEq/kg); and the base diet with 7.5% acidogenic product, 1% NaCl, and 1% KCl (T5; 1.78% K, 0.53% Na, 2.03% Cl; DCAD = ?113 mEq/kg). Periods lasted 14 d with the last 7 d used for data collection. Feeding behavior was evaluated for 12 h in the last 2 d of each period. Reducing the DCAD by feeding an acidogenic product reduced blood pH (T1 = 7.450 vs. T2 = 7.436 vs. T3 = 7.435 vs. T4 = 7.420 vs. T5 = 7.416) and induced a compensated metabolic acidosis with a reduction in bicarbonate, base excess, and partial pressure of CO2 in blood, and reduced pH and strong ion difference in urine. Reducing the DCAD reduced DM intake 0.6 kg/d (T1 = 10.3 vs. T4 = 9.7 kg/d), which was caused by the change in acid-base status (T2 + T3 = 10.2 vs. T4 + T5 = 9.6 kg/d) because counteracting the acidifying action of the acidogenic product by adding salts with strong cations to the diet prevented the decline in intake. The decline in intake caused by metabolic acidosis also was observed when adjusted for body weight (T2 + T3 = 1.75 vs. T4 + T5 = 1.66% BW). Altering the acid-base status with acidogenic diets reduced eating (T2 + T3 = 6.7 vs. T4 + T5 = 5.9 bouts/12 h) and chewing (T2 + T3 = 14.6 vs. T4 + T5 = 13.5 bouts/12 h) bouts, and extended meal duration (T2 + T3 = 19.8 vs. T4 + T5 = 22.0 min/meal) and intermeal interval (T2 + T3 = 92.0 vs. T4 + T5 = 107.7 min). Results indicate that reducing the DCAD induced a compensated metabolic acidosis and reduced DM intake, but correcting the metabolic acidosis prevented the decline in DM intake in dry cows. The decrease in DM intake in diets with negative DCAD was mediated by metabolic acidosis and not by addition of acidogenic product or salts containing Cl.  相似文献   

11.
Measurements of energy balance (EB) require the use of respiration chambers, which are quite expensive and laborious. The GreenFeed (GF) system (C-Lock Inc.) has been developed to offer a less expensive, user friendly alternative. In this study, we used the GF system to estimate the EB of cows in early lactation and compared it with EB predicted from energy requirements for dairy cows in the Finnish feeding standards. We also evaluated the association between milk fatty acids and the GF estimated EB. The cows were fed the same grass silage but supplemented with either cereal grain or fibrous by-product concentrate. Cows were followed from 1 to 18 wk of lactation, and measurements of energy metabolism variables were taken. Data were subjected to ANOVA using the mixed model procedure of SAS (SAS Institute Inc.). The repeatability estimates of the gaseous exchanges from the GF were moderate to high, presenting an opportunity to use it for indirect calorimetry in EB estimates. Energy metabolism variables were not different between cows fed different concentrates. However, cows fed the grain concentrate produced more methane (24.0 MJ/d or 62.9 kJ/MJ of gross energy) from increased digestibility than cows fed the by-product concentrate (21.3 MJ/d or 56.5 kJ/MJ of gross energy). Nitrogen metabolism was also not different between the diets. Milk long-chain fatty acids displayed an inverse time course with EB and de novo fatty acids. There was good concordance (0.85) between EB predicted using energy requirements derived from the Finnish feed table and EB estimated by the GF system. In conclusion, the GF can accurately estimate EB in early-lactating dairy cows. However, more data are needed to further validate the system for a wide range of dietary conditions.  相似文献   

12.
This meta-analysis was undertaken to determine the impact of dietary components on dry matter intake (DMI), milk yield (MY), and milk protein yield (MPY) in Holstein dairy cows. Diets (n=846) from 256 feeding trials published in Volumes 73 through 83 of the Journal of Dairy Science were evaluated for nutrient composition using 2 diet evaluation models: CPM Dairy (a computer program based on the principles of the Cornell Net Carbohydrate and Protein System) and NRC (2001). Data were analyzed with and without the effect of stage of lactation as a dummy variable (<100 d in milk or > or =100 d in milk). A mixed model regression analysis was used to completely investigate the potential relationships among composition variables and DMI, MY, and MPY. Protein and carbohydrate fractions were the main components within the DMI models, and DMI played a dominant role in estimating MY and MPY. Inclusion of stage of lactation substantially improved the MY models but did not affect model fits or residual structure for DMI and MPY.  相似文献   

13.
Multiparous cows (n = 59) were blocked by expected calving date and previous milk yield and assigned randomly to treatments to determine the effects of bovine somatotropin (bST; Posilac, Monsanto Animal Agricultural Group, St. Louis, MO) and source of dietary fat on production responses. Diets were provided from calving and included whole, high-oil sunflower seeds [SS; 10% of dietary dry matter (DM); n-6:n-3 ratio of 4.6] as a source of linoleic acid (18:2) or a mixture of Alifet-High Energy and Alifet-Repro (AF; Alifet USA, Cincinnati, OH; 3.5 and 1.5% of dietary DM, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Diets contained 181 versus 188 g of crude protein and 183 versus 186 g of acid detergent fiber/kg of DM and 1.54 versus 1.66 Mcal of net energy for lactation at the actual DM intake for SS versus AF, respectively. Cows received 0 or 500 mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals through 280 DIM. The 2 × 2 factorial combination of diet (SS or AF) with or without bST administration resulted in treatments designated as SSY, SSN, AFY, and AFN, respectively. Data were analyzed as repeated measures using mixed model procedures to determine the effects of diet, bST, and their interactions. Yield of 3.5% fat-corrected milk was not altered by diet, but was increased by 4.0 ± 1.9 kg/d from 12 to 70 DIM and by 5.1 ± 1.2 kg/d from 12 to 280 DIM by bST. Treatment did not affect DM intake or energy balance (EB) nadir. There was an interaction of bST and diet on EB because AF decreased the impact of bST on overall EB and allowed AFY cows to reach a positive EB earlier than SSY cows. Gross feed efficiency adjusted for body weight change was greater for bST-treated cows (1.03 vs. 1.15 ± 0.03 kg of fat-corrected milk/Mcal of net energy for lactation). Circulating insulin-like growth factor-I concentrations were increased by bST (85 vs. 125 ± 8 ng/mL). Body weight, body condition score, and backfat thickness were reduced by bST, but differences between treated and nontreated cows did not differ by 280 DIM. Results indicate cows responded to bST administration in early lactation, but the magnitude of the response was greater after 70 DIM. Source of dietary fat had a minimal effect on most production measurements, but relative to SS, AF decreased the impact of bST on overall EB. Results support the premise that bST administration prolongs the delay in postpartum tissue replenishment.  相似文献   

14.
The objective of this study was to evaluate the effects of dry period length and dietary energy source in early lactation on milk production, feed intake, and energy balance (EB) of dairy cows. Holstein-Friesian dairy cows (60 primiparous and 108 multiparous) were randomly assigned to dry period lengths (0, 30, or 60 d) and early lactation ration (glucogenic or lipogenic), resulting in a 3 × 2 factorial design. Rations were isocaloric and equal in intestinal digestible protein. The experimental period lasted from 8 wk prepartum to 14 wk postpartum and cows were monitored for milk yield, milk composition, dry matter intake (DMI), energy balance, and milk fat composition. Prepartum average milk yield for 60 d precalving was 13.8 and 7.7 ± 0.5 kg/d for cows with a 0- and 30-d dry period, respectively. Prepartum DMI and energy intake were greater for cows without a dry period and 30-d dry period, compared with cows with a 60-d dry period. Prepartum EB was greater for cows with a 60-d dry period. Postpartum average milk yield until wk 14 was lower for cows without a dry period and a 30-d dry period, compared with cows with a 60-d dry period (32.7, 38.7, and 43.3 ± 0.7 kg/d for 0-, 30-, and 60-d dry period, respectively). Postpartum DMI did not differ among treatments. Postpartum EB was greater for cows without a dry period and a 30-d dry period, compared with cows with a 60-d dry period. Young cows (parity 2) showed a stronger effect of omission of the dry period, compared with a 60-d dry period, on additional milk precalving (young cows: 15.1 kg/d; older cows: 12.0 kg/d), reduction in milk yield postcalving (young cows: 28.6 vs. 34.8 kg/d; older cows: 41.8 vs. 44.1 kg/d), and improvement of the EB postcalving (young cows: 120 vs. −93 kJ/kg0.75·d; older cows: −2 vs. −150 kJ/kg0.75·d. Ration did not affect milk yield and DMI, but a glucogenic ration tended to reduce milk fat content and increased EB, compared with a more lipogenic ration. Reduced dry period length (0 and 30 d) increased the proportion of short- and medium-chain fatty acids in milk fat and omitting the dry period decreased the proportion of long-chain fatty acids in milk fat. In conclusion, shortening and omitting the dry period shifts milk yield from the postpartum to the prepartum period; this results in an improvement of the EB in early lactation. An increased energy status after a short dry period can be further improved by feeding a more glucogenic ration in early lactation.  相似文献   

15.
An investigation was conducted to compare the effects of the monensin controlled-release capsule, monensin sodium in feed, and a negative control on feed intake and metabolic parameters in a randomized and blinded clinical trial. A total of 136 Holstein cows and heifers were assigned to a negative control group, administered a monensin controlled-release capsule (CRC) or administered 22 mg/kg of dry matter of monensin sodium in the total mixed ration (premix). Cows were enrolled 3 wk prior to expected calving; at this time monensin treatment began. Cows were located at the Elora Dairy Research Centre (Elora, Ontario, Canada). Blood samples were obtained at enrollment, at 1 wk prior to expected calving date, at calving, and at 1 and 2 wk postpartum. Sera from these samples were analyzed for β-hydroxybutyrate (BHBA), nonesterified fatty acids, glucose, urea, bilirubin, aspartate aminotransferase activity, insulin, and cortisol. Cows were assigned a body condition score upon enrollment and upon completion of the trial. The dry matter intake was measured for all cows for the entire experimental period (12.0, 11.7, and 11.3 kg/d for control, premix, and CRC groups, respectively). However, no differences in dry matter intake between treatment groups were noted. The interaction of experimental group and sampling time was significant for serum concentration of BHBA and urea. Both monensin delivery methods significantly decreased serum BHBA postpartum. Urea concentrations were increased in the postpartum period compared with the prepartum samples. The CRC group had a significant impact on reducing the loss in body condition over the study period. Serum concentrations of all measured metabolic parameters varied over the peripartum period. Calving season, parity, and body condition score at the start of the study period influenced many of the measured metabolic parameters.  相似文献   

16.
Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C(18:2) and C(18:3) in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C(18:1) was unaffected. Transfer of infused C(18:2) to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing infusion amount of UFA or TG. Plasma concentration of cholecystokinin-octapeptide (CCK-8) was unaffected by lipid infusion. These results indicate that unsaturated FFA reaching the duodenum are more potent inhibitors of DMI than are unsaturated TG; the effect may be at least partially mediated by GLP-1.  相似文献   

17.
The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24 kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R2 increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83 kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R2 = 0.30 and RMSEP = 2.91 kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R2 increased to 0.81 and RMSEP decreased to 1.49 kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R2 = 0.46 and RMSEP = 1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region.  相似文献   

18.
This study evaluated feed intake, milk yield, and subclinical ketosis in dairy cows in early lactation fed 2 different diets postpartum. Cows are typically offered a high-energy ration immediately after calving. We compared a conventional high-energy total mixed ration (TMR) with a transition ration that contained chopped straw. We predicted that adding chopped straw would increase dry matter intake, milk production, and indicators of energy metabolism during the first 3 wk of lactation compared to cows fed a conventional high-energy TMR. We also predicted that carryover effects would be likely for at least 2 wk after treatment ended. A total of 68 mixed-age Holstein cows were enrolled in the study 3 wk before their expected calving. All cows were managed on a single high-forage diet during the dry period. At calving, cows were allocated to 1 of the 2 diets: half to the conventional high-energy TMR (CTMR; n = 34; net energy for lactation = 1.61 Mcal/kg; neutral detergent fiber = 31.7%), and the other half to a high-forage TMR containing chopped wheat straw, equivalent to 4.27% dry matter (STMR; n = 34; net energy for lactation = 1.59 Mcal/kg; neutral detergent fiber = 33.7%) for 3 wk after calving. Cows on STMR were then shifted to CTMR for the next 2 wk to study short-term residual effects on the performance of cows. Treatments were balanced for parity, body condition score, and body weight. Feed intake was measured daily from 2 wk before to 5 wk after calving using automatic feed bins. Blood was sampled twice weekly from 2 wk before to 5 wk after calving, and β-hydroxybutyrate and glucose were measured in serum samples. Subclinical ketosis was identified using a threshold of β-hydroxybutyrate ≥1.0 mmol/L in wk 1 after calving and ≥1.2 mmol/L in wk 2 to 5 after calving. Cows were milked twice daily, and weekly samples (composite samples of morning and afternoon milkings) were analyzed to determine total solids, fat, protein, lactose, and somatic cell count. Data were analyzed in 2 separate periods: the treatment phase (wk +1, +2, and +3) and the post-treatment phase (wk +4 and +5). The addition of straw to the TMR negatively affected the dry matter intake of STMR cows during wk 2 and 3 of lactation. Daily milk yield during the first 5 wk of lactation was lower in STMR cows than in CTMR cows. Concentrations of β-hydroxybutyrate were higher in CTMR cows than in STMR cows during wk 1, but this effect was reversed during wk 2 and 3 of lactation. By 21 d in milk, STMR cows had a greater risk of developing subclinical ketosis than CTMR cows. Adding chopped wheat straw to the TMR during the first 21 d after calving lowered dry matter intake and provided no metabolic or production benefits to lactating dairy cattle.  相似文献   

19.
The objective of this study was to determine the effects of feeding an increased amount of extruded flaxseed with high proportions of n-3 fatty acids (FA) to transition dairy cows on performance, energy balance, and FA composition in plasma, adipose tissue, and milk fat. Multiparous Israeli-Holstein dry cows (n = 44) at 256 d of pregnancy were assigned to 2 treatments: (1) control cows were fed prepartum a dry-cow diet and postpartum a lactating-cow diet that consisted of 5.8% ether extracts; and (2) extruded flaxseed (EF) cows were supplemented prepartum with 1 kg of extruded flaxseed (7.9% dry matter)/cow per d, and postpartum were fed a diet containing 9.2% of the same supplement. The EF supplement was fed until 100 d in milk. On average, each pre- and postpartum EF cow consumed 160.9 and 376.2 g of C18:3n-3/d, respectively. Postpartum dry matter intake was 3.8% higher in the EF cows. Milk production was 6.4% higher and fat content was 0.4% U lower in the EF group than in the controls, with no differences in fat and protein yields. Energy balance in the EF cows was more positive than in the controls; however, no differences were observed in concentrations of nonesterified fatty acids and glucose in plasma. Compared with controls, EF cows had greater proportions of C18:3n-3 in plasma and adipose tissue. The proportion of n-3 FA in milk fat was 3.7-fold higher in the EF cows, and the n-6:n-3 ratio was decreased from 8.3 in controls to 2.3 in the EF cows. Within-group tests revealed that the C18:3n-3 content in milk fat in the EF cows was negatively correlated with milk fat percentage (r = –0.91) and yield (r = –0.89). However, no decrease in de novo synthesis of less than 16-carbon FA was found in the EF group, whereas C16:0 yields were markedly decreased. It appears that the enrichment of C18:3n-3 in milk fat was limited to approximately 2%, and the potential for increasing this n-3 FA in milk is higher for cows with lower milk fat contents. In conclusion, feeding increased amounts of C18:3n-3 during the transition period enhanced dry matter intake postpartum, increased milk production, decreased milk fat content, and improved energy balance. Increased amounts of EF considerably influenced the FA profile of plasma, adipose tissue, and milk fat. However, the extent of C18:3n-3 enrichment in milk fat was limited and was negatively correlated with milk fat content and yield.  相似文献   

20.
Enrichment of milk fat with n-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be advantageous because of their beneficial effects on human health. In addition, these fatty acids play an important role in reproductive processes in dairy cows. Our objective was to evaluate the protection of EPA and DHA against rumen biohydrogenation provided by Ca salts of fish oil. Four Holstein cows were assigned in a Latin square design to the following treatments: 1) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate low dose (CaFO-1), 2) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate high dose (CaFO-2), 3) ruminal infusion of fish oil high dose (RFO), and 4) abomasal infusion of fish oil high dose (AFO). The high dose of fish oil provided ∼16 and ∼21 g/d of EPA and DHA, respectively, whereas the low dose (CaFO-1) provided 50% of these amounts. A 10-d pretreatment period was used as a baseline, followed by 9-d treatment periods with interceding intervals of 10 d. Supplements were infused every 6 h, milk samples were taken the last 3 d, and plasma samples were collected the last day of baseline and treatment periods. Milk fat content of EPA and DHA were 5 to 6 times greater with AFO, but did not differ among other treatments. Milk and milk protein yield were unaffected by treatment, but milk fat yield and DM intake were reduced by 20 and 15%, respectively, by RFO. Overall, results indicate rumen biohydrogenation of long chain n-3 fatty acids was extensive, averaging >85% for EPA and >75% for DHA for the Ca salts and unprotected fish oil supplements. Thus, Ca salts of fish oil offered no protection against the biohydrogenation of EPA and DHA beyond that observed with unprotected fish oil; however, the Ca salts did provide rumen inertness by preventing the negative effects on DM intake and milk fat yield observed with unprotected fish oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号