首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Natural convection heat transfer from a horizontal cylinder is studied experimentally and numerically. Experimental study had taken place in different environmental temperature in a conditioned room which can be maintained at a stable required value and inside a sufficiently designed test cabin. The environmental and cylinder surface temperatures varied between 10 °C–40 °C and 20 °C–60 °C respectively. In the experimental study, two cylinders having different diameters of 4.8 mm–9.45 mm are used and constant heat flux was applied. On the basis of the experimental data, a correlation for the average Nusselt number over the cylinder is proposed in the range of 7.4 101 < Ra < 3.4 103. The proposed correlation is compared with the well known correlations on natural convection heat transfer from a horizontal cylinder in the specified range of Rayleigh number, and it is shown that the results are in satisfactory agreement. The problem is also investigated numerically. The experimental data and the numerical results fall in ± 20% band. The numerical results obtained in this study are also compared with the results of Merkin. The characteristics of trend lines are similar.  相似文献   

2.
The paper presents both three and two-dimensional numerical analysis of convective heat transfer in microchannels. The three-dimensional geometry of the microchannel heat sink followed the details of the experimental facility used during a previous research step. The heat sink consisted of a very high aspect ratio rectangular microchannel. Two channel spacings, namely 1 mm and 0.3 mm (0.1 mm), were used for three-dimensional (two-dimensional) numerical model, respectively. Water was employed as the cooling liquid. The Reynolds number ranged from 200 to 3000. In the paper, thermal entrance effects and conduction/convection coupling effects are considered both for the test case of uniform channel inlet conditions and the complete geometry of the experiment. Finally, the comparison between measured and computed heat flux and temperature fields is presented. Contrary to the experimental work, the numerical analysis did not reveal any significant scale effect on heat transfer in microchannel heat sink down to the smallest size considered (0.1 mm).  相似文献   

3.
Natural convection heat transfer enhancement from a horizontal cylinder with a textile coating is studied experimentally and numerically. The coating layer may be used for two purposes. According to the thickness of the coating it may be used as an insulating material or for surface augmentation. In the experimental study, two cylinders having different diameters of 4.8 mm and 9.45 mm are used. The bare cylinders having a radius smaller than a certain critical size were wrapped with a textile material. Wrapped cylinder diameters were increased to 9 and 12.8 mm respectively after coating and constant heat flux was applied to all bare and wrapped cylinders. Experimental study was carried out at different ambient temperatures in a conditioned room which can be maintained at a stable required value and inside a sufficiently designed test cabin. The ambient and cylinder surface temperatures (T and Tw) varied between 10 °C – 40 °C and 20 °C – 60 °C respectively. Heat transfer rates from bare and wrapped horizontal cylinders were compared and heat transfer enhancement was observed. On the basis of the experimental data average Nusselt numbers were calculated and compared with the well known correlations on natural convection heat transfer from a horizontal cylinder in the specified range of Rayleigh number, and it is seen that the results are in good agreement. The problem is also investigated numerically. Experimental and the numerical results fall in ± 30% band.  相似文献   

4.
5.
The effect of conduction of horizontal walls on natural convection heat transfer in a square cavity is numerically investigated. The vertical walls of the cavity are at different constant temperatures while the outer surfaces of horizontal walls are insulated. A code based on vorticity–stream function is written to solve the governing equations simultaneously over the entire computational domain. The dimensionless wall thickness of cavity is taken as 0.1. The steady state results are obtained for wide ranges of Rayleigh number (10Ra < 106) and thermal conductivity ratio (0 < K < 50). The variation of heat transfer rate through the cavity and horizontal walls with Rayleigh number and conductivity ratio is analyzed. It is found that although the horizontal walls do not directly reduce temperature difference between the vertical walls of cavity, they decrease heat transfer rate across the cavity particularly for high values of Rayleigh number and thermal conductivity ratio. Heatline visualization technique is a useful application for conjugate heat transfer problems as shown in this study.  相似文献   

6.
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130 W/cm2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120 × 160 × 100 grid for the micro-channel with an aspect ratio of (α = 4.56) and examined for Reynolds numbers in the laminar range (Re 500–2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows.  相似文献   

7.
Artificial Neural Network (ANN) is used to determine natural convection heat transfer and fluid flow around a cooled horizontal circular cylinder having constant surface temperature. Governing equations of natural convection were solved using finite volume technique by writing a FORTRAN code to generate the database for ANN scheme and Rayleigh number is changed from Ra = 106 to 108. Results obtained from numerical solutions were used for training and testing the ANN approach. A comparison was performed among the soft programming (ANN), experimental observation and Computational Fluid Dynamic (CFD) code. It is observed that ANN soft programming code can be used more efficiently to determine cold plume and thermal field generated around a cold cylinder. Based on the results a new correlation is developed for natural convection of cooled horizontal cylinders.  相似文献   

8.
In this study, experimental and three dimensional numerical work was carried out to determine the average heat transfer coefficients for forced convection air flow over a rectangular flat plate. Three dimensional numerical simulations were obtained using a commercial finite volume based fluid dynamics code called Fluent 6.3. The experiments were performed for mass transfer using the naphthalene sublimation technique. The results were presented in terms of heat transfer parameters using the analogy between heat and mass transfer. All the experimental results are correlated within an accuracy of ± 12%.  相似文献   

9.
The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are investigated to determine the important parameters' effects on the heat transfer coefficient and also to have reliable empirical correlations based on the neural network analysis. Nanofluids with various concentrations of 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. The horizontal circular test plate, made from copper with different roughness values of 0.2, 2.5 and 4 μm, is used as a heating surface. The artificial neural network (ANN) training sets have the experimental data of nucleate pool boiling tests, including temperature differences between the temperatures of the average heater surface and the liquid saturation from 5.8 to 25.21 K, heat fluxes from 28.14 to 948.03 kW m− 2. The pool boiling heat transfer coefficient is calculated using the measured results such as current, voltage, and temperatures from the experiments. Input of the ANNs are the 8 numbers of dimensional and dimensionless values of the test section, such as thermal conductivity, particle size, physical properties of the fluid, surface roughness, concentration rate of nanoparticles and wall superheating, while the outputs of the ANNs are the heat flux and experimental pool boiling heat transfer coefficient from the analysis. The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are modeled to decide the best approach, using several ANN methods such as multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis networks (RBF). Elimination process of the ANN methods is performed together with the copper and aluminum test sections by means of a 4-fold cross validation algorithm. The ANNs performances are measured by mean relative error criteria with the use of unknown test sets. The performance of the method of MLP with 10-20-1 architecture, GRNN with the spread coefficient 0.7 and RBFs with the spread coefficient of 1000 and a hidden layer neuron number of 80 are found to be in good agreement, predicting the experimental pool boiling heat transfer coefficient with deviations within the range of ± 5% for all tested conditions. Dependency of output of the ANNs from input values is investigated and new ANN based heat transfer coefficient correlations are developed, taking into account the input parameters of ANNs in the paper.  相似文献   

10.
The present paper describes the upward motion, the interaction and the impingement heat transfer to the upper wall of two thermal plumes from two heated sections on a horizontal plate. Numerical analysis was performed for dimensionless pitch Pi = 0.26, 0.50, 0.76 and 1.0, Grashof number Gr = 103-106 and Pr = 170. Numerical results show that the upward motion is divided into three patterns depending on the pitch of two heated sections. The first pattern is the unification of two thermal plumes like one for short pitch. The second one is the separate upward motion after the unification. The third one is the independent motion for long pitch. These patterns were investigated by visualization of thermosensitive liquid crystal suspension. The impingement local heat transfer on the upper wall is evaluated transiently for various Grashof numbers. Mean Nusselt number depends on Gr−0.16.  相似文献   

11.
Laminar natural convection in inclined enclosures filled with different fluids was studied by a numerical method. The enclosure was divided by a solid impermeable divider. One side of partition of enclosure was filled with air and the other side had water. The enclosure was heated from one vertical wall and cooled from the other while horizontal walls were adiabatic. The governing equations which were written in stream function–vorticity form were solved using a finite difference technique. Results were presented by streamlines, isotherms, mean and local Nusselt numbers for different thermal conductivity ratios of solid impermeable material (plywood or concrete), inclination angle (0° ≤ ? ≤ 360°) and Grashof numbers (103 ≤ Gr ≤ 106). The code was validated by earlier studies, which are available in the literature on conjugate natural convection heat transfer. Analytical solutions were obtained for low Grashof numbers. Obtained results showed that both heat transfer and flow strength strongly depended on thermal conductivity ratio of the solid material of partition, inclination angle and Grashof numbers. The heat transfer was lower in the air side of the enclosure than that of the water side.  相似文献   

12.
Local turbulent mixed convection heat transfer in inclined (from ? = 0° (horizontal position) till ? = 90° (vertical position)) flat channels for opposing flows was investigated for the case when only bottom wall is heated (unstably stratified flow conditions). Wide ranges of airflow parameters are covered: Re = 4 × 103-6.6 × 104, Grq = 4.7 × 107-6.3 × 1010, pressure p = 0.1; 0.2; 0.4; 0.7; 1.0 MPa. Correlation for calculation of heat transfer in inclined flat channels was suggested for the region without buoyancy instabilities. The experimental data were compared with the recent experimental data for inclined flat channels when upper wall is heated (stably stratified flow conditions).  相似文献   

13.
An experimental study was done for hydrodynamically fully developed and thermally developing laminar air flows in a horizontal circular tube has a 30 mm inside diameter and 900 mm heated length (L/D = 30) under a constant wall heat flux boundary condition, with different aluminum entrance section pipes (calming sections) having the same inside diameter as test section pipe but with variable lengths of 600 mm (L/D = 20), 1200 mm (L/D = 40), 1800 mm (L/D = 60), and 2400 mm (L/D = 80). The Reynolds number ranged from 400 to 1600 and the heat flux is varied from 60 W m− 2 to 400 W m− 2. This paper examines the effects of the entrance sections lengths and heating on the free and forced convection heat transfer process. The surface temperature data were measured and heat transfer rates at different heat flux levels as well as different Reynolds numbers were calculated and correlated in the form of relevant parameters. The buoyancy force has a significant effect on the heat transfer and the combined convection factor was approximately varied form 0.13 ≤ Gr/Re2 ≤ 7.125. It was found that the surface temperature increases as the entrance section length increases. It was inferred that the heat transfer decreases as the entrance section length increases due to the flow resistance and the mass flow rate. The proposed correlation was compared with available literature and with laminar forced convection and showed satisfactory agreement.  相似文献   

14.
Natural convection heat transfer from horizontal concrete cylinder heated with cylindrical heat source was investigated experimentally and numerically. Bare cylinder having a diameter of 9.45 mm was buried in a cylindrical concrete cylinder and thermocouples located outside the copper tube and inside and outside of the concrete cylinder in axial, radial and angular directions. Experiments are conducted at 20 °C and 30 °C ambient temperatures in a conditioned room. Copper cylinder surface temperatures varied between 30–50 °C and 40–50 °C for 20 °C and 30 °C ambient temperatures respectively. In a numerical study, the measured temperatures in the experimental study were used for boundary conditions. Experimental and numerical results were compared and heat transfer enhancement was seen for concrete cylinder. Also the effect of the decrease in the temperature of the copper tube surface was investigated on an ideal Carnot refrigerator. It is found that the enhancement in the coefficient of performance of a Carnot refrigerator is about 35%.  相似文献   

15.
W. Chun  H.J. Lee  J.T. Kim 《Solar Energy》2009,83(3):409-419
A series of experiments were conducted to investigate the effects of different working fluids on the behavior and performance of a bi-directional thermodiode. The thermodiode was made up of two rectangular loops mounted between a collector plate and a radiator plate. The loops were filled with a working fluid for effective heat transfer when the thermodiode was forward biased. Five different working fluids were tested with thermal conductivity values ranging from 0.1 to 0.607 W/m-K, thermal expansion coefficient values ranging from 2.54 × 10−4 to 1.43 × 10−3 1/K, and kinematic viscosity values ranging from 6.5 × 10−7 to 1 × 10−4 m2/s. The thermodiode was heated by a radiant heater consisting of 88 halogen lamps that generated a heat flux of about 10W/m2 on the collector surface. Experimental results indicated that the onset time for natural convection to be induced throughout the diode system did not differ considerably when different working fluids were used. On the other hand the required fluid temperature differences in the loops for the onset of throughflow were quite different and depended strongly upon the viscosity and other properties such as thermal expansion coefficient and specific heat of the working fluid. Of the five fluids tested, water and low-viscosity silicon oil had the highest heat transfer rate. An analytical model was developed to predict and analyze the steady operation of the diode system when different working fluids are used.  相似文献   

16.
Numerical analyses of fluid flow and heat transfer due to buoyancy forces in a tube inserted square cavity filled with fluid were carried out by using control volume method in this study. The cavity was heated from the left wall and cooled from the right isothermally and horizontal walls were adiabatic. A circular tube filled with air was inserted into the square cavity. The case that the inside and outside of the tube were filled with the same fluid (air) was examined. Varied solid materials were chosen as the tube wall. Results were obtained for different Rayleigh numbers (Ra = 104, 105 and 106), thermal conductivity ratio of the fluid to the tube wall (k = 0.1, 1 and 10) and different location centers of the tube (c (0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75)). Comparison with benchmark solutions of the natural convection in a cavity was performed and numerical results gave an acceptable agreement. It was found that varied location of the tube center can lead to different flow fields and heat transfer intensities which are also affected by the value of Rayleigh number.  相似文献   

17.
This experimental study is performed to investigate condensation heat transfer coefficient of R-134a flow inside corrugated tube with different inclinations. Different inclinations of test condenser ranging from − 90° to + 90° and various flow mass velocities in the range of 87 to 253 [kg/m2s] are considered in this study. Data analysis showed that change in the tube inclination had a significant effect on condensation heat transfer behavior. At low mass velocities, and low vapor qualities, the highest condensation heat transfer coefficient was obtained for α = + 30° which was 1.41 times greater than the least one obtained for α = − 90°. The results also showed that at all mass velocities, the highest average heat transfer coefficients were achieved for α = + 30°. Based on the experimental results, a new empirical correlation is proposed to predict the condensation heat transfer coefficient of R134a flow in corrugated tubes with different inclinations.  相似文献   

18.
New correlations of the two-phase multiplier and heat transfer coefficient of R134a during evaporation in a multiport minichannel at low mass flux are proposed. The experimental results were obtained from a test using a counter-flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Test section is composed of the extruded multiport aluminium inner tube with an internal hydraulic diameter of 1.2 mm and an acrylic outer tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at heat fluxes between 10 and 35 kW/m2, and a refrigerant mass flux between 45 and 155 kg/(m2 s). Some physical parameters that influenced the frictional pressure drop and heat transfer coefficient are examined and discussed in detail. The pressure drop and heat transfer coefficient results are also compared with existing correlations. Finally, new correlations for predicting the frictional pressure drop and heat transfer coefficient at low mass fluxes are proposed.  相似文献   

19.
The buoyancy‐induced heat transfer and fluid flow in a triangular enclosure are investigated both numerically and experimentally. The enclosure is heated from one wall and the adjacent wall is insulated. Hypotenuse of the triangle is cooled isothermally. The numerical tests and experiments covered a range of Rayleigh number, Ra, from 1.5 × 104 to 1.5 × 105. The local and average Nusselt numbers are given for different orientation angles. A code was written based on finite difference method in Fortran platform to solve governing equations of natural convection. Experimental and numerical results show good agreement. It is observed that inclination angle can be used as a control parameter for heat transfer.  相似文献   

20.
An experimental study has been performed to investigate the heat and mass transfer performance in a falling film absorber of a small-sized absorption chiller/heater. The components of the chiller/heater were concentrically arranged in a cylindrical form with a low temperature generator, an absorber and an evaporator from the center. The arrangement of such a helical-type heat exchanger makes the system more compact compared to a conventional one. As a working fluid, LiBr + LiI + LiNO3 + LiCl solution is used to get improved heat transfer effect. The heat and mass transfer coefficients of the helical absorber provide similar values compared with the data obtained for horizontal absorbers at similar solution flow rates. The heat and mass transfer coefficients of LiBr + LiI + LiNO3 + LiCl solution increase as the solution flow rate per unit length increases. However, if the solution flow rate is larger than 0.03 kg/m s, the heat and mass transfer increase is minimal. Thus, 0.03 kg/m s is recommended as an optimal solution flow rate. The heat and mass flux performance of LiBr + LiI + LiNO3 + LiCl solution shows the tendency of 2-5% increase compared with that of LiBr solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号