首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Evidence suggests larval yellow perch, Perca flavescens, utilize nearshore and offshore habitat during the 30–40 day period between hatch and transition from pelagic to demersal habitat. In a large, open system like Lake Michigan this represents a significant increase in available habitat and it is important to understand how this increase may impact our ability to sample larval yellow perch in an unbiased manner. We measured the vertical distribution of larval yellow perch in southern Lake Michigan as a function of size, age, and diel period. Larval yellow perch were collected from two zones (surface and epilimnion) from 1 to 32 km from shore in 2001 during the day; on four dates surface samples were also collected at night. Results indicate larval perch are more abundant at the surface at night han during the day. Larval yellow perch < 15 mm total length (TL) and younger than 18 days post hatch were found in both surface and epilimnion habitat during the day, but larvae > 15 mm TL were captured only in the epilimnion and farther than 5 km from shore, which suggests a different spatial distribution for larger, older larvae. Diel differences in larval abundance and size at the surface suggest more and larger larvae will be caught for a similar effort at night as compared to daytime sampling. Observed differences in larval distribution with size and age also suggest that sampling concentrated nearshore and/or at the surface has the potential to under-sample larger/older yellow perch larvae in Lake Michigan.  相似文献   

2.
Due to variability in biotic and abiotic conditions along a vertical gradient within aquatic systems, the vertical distribution of larval fish can profoundly affect their growth and survival. In large systems such as the Great Lakes, vertical distribution patterns also can influence dispersal and ultimately settlement events. The objective was to describe the diel vertical distribution of the larval fish community in the pelagic waters of Lake Michigan and determine which biotic and abiotic factors most strongly influence their vertical distribution. To determine vertical distribution, the upper 27 m of the water column was divided into six discrete depth bins. Larval fish sampling was conducted within each of these depth bins on seven occasions during both day and night. Temperature, light intensity, and prey density also were recorded at depths corresponding to larval fish sampling. Larval fish from five species were collected during the study: alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsonii), and yellow perch (Perca flavecens). Among the five species, we observed three general patterns of depth distribution. Alewife and yellow perch were restricted to the upper strata, whereas the opposite trend was observed for deepwater sculpin. Bloater and burbot larvae were more evenly distributed throughout the upper 27 m, and their pattern of vertical distribution changed between diel periods. Our analysis suggests abiotic factors were more important than biotic factors in structuring the vertical distribution of larval fish in southwestern Lake Michigan, with temperature having the largest influence on distribution of larvae.  相似文献   

3.
Yellow perch have experienced widespread recruitment failure within Lake Michigan since the early 1990s. Efforts to explain annual recruitment variability have primarily focused on the first year of growth, while the juvenile life stage has largely been neglected. Juvenile yellow perch, age-0 through age-2, were collected annually from 2006–2010 in Illinois waters of Lake Michigan to assess temporal variability of size-at-age and size-selective mortality. Age-0 and age-2 total length at capture differed significantly between years with a maximum difference of 4.4 mm and 11.2 mm, respectively. First winter size-selective mortality was not observed for any year-class, however size-specific growth, with larger individuals growing faster than smaller counterparts, occurred during the first winter for all year-classes but 2006. Size-selective mortality was documented between age-1 and age-2 of the 2006 year-class with yellow perch less than 70 mm at age-1 not surviving through age-2. Though population level effects remain unknown, size-specific growth and mortality during the juvenile life stage may influence the size structure and year-class strength of yellow perch in southwestern Lake Michigan. Identification of size-selective mortality occurring beyond the first growing season highlights the significance of rapid growth during early life and the importance of investigating whole life stages to identify factors influencing year-class strength.  相似文献   

4.
Spatial and temporal distribution of larval yellow perch (Perca flavescens) in southeastern Lake Michigan was described from samples collected during 1973–1981 with plankton nets and benthic sleds in water 0.5 to 21 m deep. Yellow perch larvae  7.5 mm total length were numerous from mid-May to early or mid-July. Larvae taken before mid-June hatched from eggs spawned in inland waters, rather than in Lake Michigan. Those larvae appearing early occurred chiefly in shallow water (≤1.5 m), whereas larvae caught later were chiefly distributed in deeper water (≥ 6 m). Larval perch abundance was similar at all bottom depths ≥ 6 m, was low in surface water during the day, and low near bottom at night. At 0.5- and 1.5-m stations, significantly more larvae were caught at night than during the day.  相似文献   

5.
Water mass movement within the Great Lakes may rapidly transport fish larvae from favorable nursery areas to less favorable habitats, thereby affecting recruitment success. During 2001 and 2002, we released satellite-tracked drifting buoys in eastern Lake Michigan to follow discrete water masses, and used ichthyoplankton nets to repeatedly sample larval fish within these water masses. Observed nearshore water currents were highly variable in both direction and velocity. Current velocities far exceeded potential larval fish swimming speeds, suggesting that currents can potentially rapidly advect fish larvae throughout the lake. Evidence suggests that while paired drifters released during 2002 were able to track relatively small alewife (Alosa pseudoharengus) and yellow perch (Perca flavescens) larvae within an alongshore coastal current, paired drifters released during 2001 failed to track larger alewife larvae when flow was more offshore and highly variable. These results are consistent with the decorrelation scales associated with alongshore and offshore transport.  相似文献   

6.
Gizzard shad/alewife, Dorosoma cepedianum/Alosa pseudoharengus, emerald shiners, Notropis atherinoides, white bass/white perch, Morone chrysops/Morone americana, and yellow perch, Perca flavescens, constituted over 97% of the larval fish collected in Ohio and Michigan waters of the western basin of Lake Erie during 1977. Significantly greater numbers of gizzard shad/alewife and spottail shiner, Notropis hudsonius, larvae were captured immediately adjacent to the shore than at a depth of 5 m offshore while greater numbers of smelt, Osmerus mordax, larvae were captured at points further offshore at a depth of 5 m than at points immediately adjacent to the shore. Significantly greater numbers of walleye, Stizostedion vitreum, larvae were collected along the Ohio shoreline portion of the study area than in Maumee Bay or along the Michigan shoreline. Significantly greater numbers of freshwater drum, Aplodinotus grunniens, larvae were collected in Maumee Bay.  相似文献   

7.
Reduced growth and increased winter mortality are possible mechanisms for poor recruitment of age-0 yellow perch (Perca flavescens) in southeastern Lake Michigan. To assess the role of growth variability on recruitment of age-0 yellow perch, we quantified length-by-date and abundance during 1996–2002. Analyses revealed significant differences in length among years and sites. To resolve spatial trends, we contrasted the 1998 cohort from southeastern Lake Michigan with conspecifics from populations located within and beyond the Lake Michigan watershed. These analyses identified significant differences in length; trends suggested that the capacity for growth in the cohort from southeastern Lake Michigan was similar to these other populations. To characterize winter survival for the 1998 age-0 cohort, otoliths from age-1 perch in 1999 were used to back-calculate length (BCL) from the previous autumn. The BCL distribution was significantly larger than the 1998 distribution, but analyses led to the inference that this age-0 cohort experienced little mortality during the winter of 1998–99. We used a regression model to quantify risk of winter starvation for the 1998 cohort, using 1981–2001 winter water temperatures from southeastern Lake Michigan. This analysis suggested that risk of starvation for the 1998 cohort across this period was low (1.0–4.4%). Back calculation and regression analyses allow us to reject the hypothesis that reduced growth led to a high rate of winter mortality for the 1998 cohort. If we extrapolate our findings to past cohorts, the results would be similar unless these fish were significantly smaller than the 1998 cohort. Variation in age-0 length, growth, or winter mortality failed to fully explain yellow perch recruitment patterns in southeastern Lake Michigan. We hypothesize that factors acting before the juvenile stage is sampled during summer are shaping recruitment; resolving this requires further, stage-specific studies.  相似文献   

8.
The age composition of the yellow perch (Perca flavescens) population in Lake Michigan is assessed annually by five management agencies, but all agencies do not use the same structure to estimate ages. The reliability of the most commonly used structure, scales, has not been formally evaluated for this population. We compared ages estimated by three readers from scales and sagittal otoliths for 150 yellow perch from southwestern Lake Michigan. The maximum age of yellow perch determined from scales and otoliths was 12. Otoliths had better precision (reproducibility) and usually had more annuli than scales for all three readers. Scale ages were usually younger than otolith ages when otolith ages were ≥ 7. Chi-square tests revealed significant differences (P < 0.05) between the age distributions determined from scales and otoliths for two of the three readers. We recommend use of otoliths for aging Lake Michigan yellow perch greater than 150 mm in length because of greater precision, easier readability, and detection of more annuli.  相似文献   

9.
A total of 19 taxa of larval fish was collected with metered plankton nets in Ohio and adjacent Ontario waters of the western basin of Lake Erie. Analysis of yellow perch, Perca flavescens, collection data indicates that shallow inshore areas serve as important nursery areas for this species. Collection of larvae provides evidence of relict breeding populations of lake whitefish, Coregonus clupeaformis, and sculpin (Cottus sp.) in the western basin.  相似文献   

10.
Identifying mechanisms influencing early-life survival may elucidate recruitment variability of fish populations. Yellow perch (Perca flavescens), are economically and ecologically important in Saginaw Bay, Lake Huron, but have recently experienced low recruitment despite strong production of age-0 fish. Recent year classes have been characterized by slow first-year growth, as indexed by fall size of age-0 yellow perch; however, seasonal growth patterns and accompanying diet and survivorship patterns have not been documented for age-0 yellow perch in Saginaw Bay. To this end, we collected age-0 yellow perch weekly (larvae) and monthly (juveniles) throughout the first year of life during 2009 and 2010 to track changes in growth and diet composition. We also evaluated predation and over-winter energy-loss as potential mechanisms of size-selective mortality. Yellow perch growth, energy accumulation and size-specific condition decreased during late summer and fall. During larval and juvenile stages, predominant components of yellow perch diets transitioned from copepods to Daphnia and other zooplankton; however, we observed only weak ontogenetic shifts toward benthic prey. Smaller yellow perch a) were preferentially preyed upon by walleye (the bay's main piscivore) and b) displayed lower mass-specific energy content, potentially increasing overwinter starvation risk, suggesting that slow growth increases mortality risk. Our results are consistent with the hypothesis that recruitment dynamics are influenced by an interplay of size-selective mortality and diet-induced reductions in growth.  相似文献   

11.
Understanding stock structure and habitat use is important for sustainable fisheries management and conservation of genetic and phenotypic diversity. In eastern Lake Michigan, yellow perch Perca flavescens is found in both the nearshore region of Lake Michigan proper and drowned river mouth (DRM) lakes, small estuary-like systems directly connected to Lake Michigan. Recent genetic analyses suggest complex stock structure between these habitats and the potential migration of Lake Michigan yellow perch into the profundal zone of DRM lakes. We quantified carbon (δ13C) and oxygen (δ18O) stable isotope ratios of yellow perch otolith cores to index natal origins, and measured muscle δ13C, nitrogen (δ15N), δ18O, and hydrogen (δ2H) isotope ratios to reflect recent diet and habitat use. Stable isotope ratios of otolith cores and muscle samples support the existence of resident populations in nearshore Lake Michigan and DRM lakes, as well as Lake Michigan migrants using DRM lakes. Most fish caught in DRM lakes that had natal and recent stable isotope values similar to Lake Michigan fish were collected during fall in DRM lake profundal zones. Comparison of otolith core and muscle stable isotope ratios of individual yellow perch suggest that individuals that recently migrated to DRM lakes also spent early life in Lake Michigan. Differential habitat use patterns of yellow perch in eastern Lake Michigan may have important implications for harvest estimates and fishing regulations. Migration by Lake Michigan fish into DRM lakes does not appear to be related to reproduction, and the underlying benefits of these migrations remain unclear.  相似文献   

12.
One hypothesis for the transcontinental and intra-Great Lakes basin transfer of round gobies (Neogobius melanostomus) has been that round gobies were pumped into the ballast water of ships. During June 2005 in Lake Erie, we obtained evidence of a vertical migration of round goby larvae, when we collected 167 round goby larvae in surface ichthyoplankton net tows at night and zero during day. These results complemented similar findings from the Muskegon River estuary of Lake Michigan during 2003 and 2004, documenting diel vertical migration for the first time in larval round gobies. We suggest vertical migration behavior may have allowed larval round gobies to be transported to and within the Great Lakes via ballast water and dispersed in the Great Lakes via advection of 6.5–8.5-mm long larvae at the surface. Based on our results, if ballast water was only taken on near the surface during daylight hours from May through September when larval round gobies were present, it would have mitigated the spread of round gobies throughout the Great Lakes.  相似文献   

13.
Understanding factors like fish size and condition can be crucial to fisheries management. In the Great Lakes, long-term observations of these factors are used to describe the effects of ecosystem dynamics on fish ecology. Considering the diversity of available benthic habitat and dynamic environmental conditions in the nearshore zone of Lake Michigan, we sought to understand the variability in length-at-age and condition of yellow perch and round goby, two important members of the nearshore fish community. We measured these metrics from both species captured in gillnets across three locations in Illinois waters of southwest Lake Michigan from June through October 2008–2012 and related the spatiotemporal differences seen to observed variation in temperature, prey abundance, and competitor abundance. Yellow perch length-at-age varied annually for all three age-classes, with differences relating to thermal regime (age-0 and age-2) and alewife abundance (age-1). Yellow perch condition, measured as residual weight, varied spatially and annually, showing a negative relationship with round goby abundance. Round goby length-at-age was greater at the southern location, likely due to warmer temperatures, while condition was greater at the rockier location. In general, model selection analysis revealed several potential relationships between the relative abundances of competitor species and length and condition of yellow perch and round goby, while prey abundance may be related to round goby condition. These results demonstrate the importance of understanding the diversity in nearshore habitats and the influence of this diversity on factors affecting fish production, including size and condition, in southwest Lake Michigan.  相似文献   

14.
Theoretical by-catch (including landed and non-landed bycatch) of walleye (S. vitreus), yellow perch (Perca flavescens), and white perch (Morone americana) from the Lake Erie commercial gillnet fisheries during 1994-2007, was predicted by a delta model developed on the fishery-independent survey data (Lake Erie Partnership Index Fishing Survey). The delta model consisted of one generalized additive model and one AdaBoost model. The generalized additive model was used to predict non-zero catches of the by-catch species, and the AdaBoost model was used to predict the probability of obtaining non-zero catches. Non-landed by-catch was estimated as the difference between the theoretical by-catch predicted from the delta model and the landed by-catch recorded in the commercial fishery data. The theoretical by-catch of walleye was relatively higher in the west basin in October. A higher theoretical by-catch of yellow perch occurred in the west central basin in November, and a higher theoretical by-catch of white perch occurred in the west central basin in October. We observed higher levels of non-landed by-catch of walleye in the west basin during August to September, higher levels of non-landed by-catch of yellow perch in the west central and east central basins in November, and higher levels of non-landed by-catch of white perch in the west basin in August and November. The combination of the AdaBoost model with the delta model provided an alternative model in by-catch analyses when the percentage of zero observations was high.  相似文献   

15.
This study evaluated yellow perch (Perca flavescens) diet in southern Lake Michigan to determine whether prey consumed fluctuated with abundance of zooplankton, benthic invertebrates, and fish species during the period 1984 to 2002. Some change in benthic community abundance was evident from samples collected in the region during the period, including the naturalization of the round goby and the zebra mussel between 1993 and 2002. In addition, changes in fish abundance were evident from 1984 to 2002, when spottail shiner (Notropis hudsonius) and alewife (Alosa pseudoharengus) increased, while yellow perch, and rainbow smelt (Osmerus mordax) declined. Non-indigenous species eaten by yellow perch in 2002 included spiny water fleas (Bythotrephes longimanus), round gobies, and alewives with the latter two species dominating the diet by volume. Yellow perch did exhibit prey preferences, although they consumed a variety of different organisms over the period of study. This euryphagous characteristic of yellow perch is expected to promote its persistence in southern Lake Michigan, despite a changing prey base.  相似文献   

16.
Scales and opercles were used to age yellow perch Perca flavescens collected in 1989 from Lake Madison (South Dakota), Dauphin Lake (Manitoba), and southern Lake Michigan (Indiana). Three readers aged fish from Lake Madison and Dauphin Lake once and two readers aged fish from Lake Michigan twice. The coefficient of variation (CV) was calculated to compare precision. Ages determined from opercles were as precise as those from scales for fish from Lake Madison (CV = 0 for both structures), and more precise than ages from scales for fish from Dauphin Lake (CVopercle = 14.0, CVscale = 27.4, p < 0.001) and Lake Michigan (CV opercle = 10.6, CVscale = 13.9, p < 0.001). The high precision of scale and opercle ages for yellow perch from Lake Madison can be attributed to the fast growth rate of fish from that lake and also that only age 1 and 2 fish were aged. The greater precision of opercle ages in comparison to scale ages for Dauphin Lake and Lake Michigan yellow perch can be attributed to ease of recognition of false annuli on opercles as well as to difficulty in distinguishing between false and true annuli crowded on the edge of scales from mature, slower growing fish. Because true annuli are more easily recognized on opercles, ages determined from opercles may be more accurate than ages determined from scales for yellow perch growing at slow or moderate rates.  相似文献   

17.
Ichthyoplankton was collected at 17 nearshore (bottom depth ≥5 m but ≤10 m) sites in western Lake Huron during 1973–75 with a 0.5-m net of 351-micron mesh towed at 99 m/min. Larvae of rainbow smelt (Osmerus mordax) dominated late spring and early summer catches and larvae of alewives (Alosa pseudoharengus) the midsummer catches. Larval yellow perch (Perca flavescens) were caught in early summer but were rarely the dominant species. The time of spawning and hatching, and thus occurrence of larvae, differed between areas but was less variable for alewives than for yellow perch. The appearance of larvae in Saginaw Bay was followed successively by their appearance in southern, central, and northern Lake Huron. Rainbow smelt were most abundant in northern Lake Huron and yellow perch and alewives in inner Saginaw Bay. Densities of either rainbow smelt or alewives occasionally exceeded 1/m3, whereas those of yellow perch never exceeded 0.1/m3. Abundance of alewives was usually highest 1 to 3 m beneath the surface and that of rainbow smelt 2 to at least 6 m beneath the surface. Important nursery areas of rainbow smelt were in bays and off irregular coastlines and those of yellow perch were in bays. All nearshore waters seemed equally important as nursery areas of alewives.  相似文献   

18.
Habitat plays an essential role in shaping aquatic communities yet limited information on the type and distribution of bottom features is available in the form of detailed maps. This is especially apparent in large systems where obtaining such information can be both expensive and challenging. Current maps of Lake Michigan substrate are very general and lack suitable detail of substrate composition and geographic extent of rocky areas. This limits our ability to link biological processes, such as fish spawning, to nearshore habitat and makes it difficult to target structurally complex habitats for sampling. We compiled substrate information gathered over 72 years for Illinois waters and incorporated it into a GIS framework to generate more complete documentation of sediment type and particle size distribution in southwestern Lake Michigan. Sediment data for 1682 sites were standardized to phi units; natural neighbor interpolation was used during GIS analysis to predict sediment type in areas lacking data. Predicted sediment values based on this interpolation had a significant positive relationship with observed sediment values (R2 = 0.92). Further, we linked existing fishery (yellow perch Perca flavescens) data with newly generated substrate information to identify potential associations between spawning site selection and habitat. Tagging data indicated that substrate quality affected the likelihood of yellow perch returning to their release sites in subsequent spawning seasons; higher fidelity was associated with larger, coarser substrate. The generated map will be a useful tool to enhance our understanding of habitat's importance in the Great Lakes, particularly when linked with fishery data.  相似文献   

19.
Water clarity is an important environmental variable that may affect fish populations by altering the visual environment. Effects can change feeding ability, as well as alter predation risk. The western basin of Lake Erie provides a valuable model system for studying the effects of transparency because the two main tributaries, the Maumee and Detroit rivers, differ substantially in clarity. We used Generalized Additive Models (GAMs) to quantify the relationship between transparency and the observed abundance and length of age-0 yellow perch (Perca flavescens) in August, based on surveys from 1986 to 2006. Secchi data from June to August were included in the models that best explained the variation in yellow perch abundance and length. August values for bottom oxygen and bottom temperature also increased model fit for abundance, whereas only bottom temperature improved model fit for length. Our models indicate that transparency was positively related to the August length while abundance of age-0 yellow perch was inversely related to transparency. Highest abundance was observed in areas with the lowest transparency, with peak abundances observed in areas with less than 1 m of Secchi depth. This is in contrast to August length, which increased as transparency increased, to an asymptote at around 3 m of Secchi depth. The split nature of water clarity conditions in the western basin of Lake Erie has resulted in areas with higher growth potential, versus areas with higher apparent survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号