共查询到20条相似文献,搜索用时 21 毫秒
1.
Key variable identification for classifications is related to many trouble-shooting problems in process industries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in application for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diagnosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee Eastman process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 相似文献
2.
Phasit Charoenkwan Chanin Nantasenamat Md. Mehedi Hasan Mohammad Ali Moni Pietro Lio Watshara Shoombuatong 《International journal of molecular sciences》2021,22(16)
Accurate identification of bitter peptides is of great importance for better understanding their biochemical and biophysical properties. To date, machine learning-based methods have become effective approaches for providing a good avenue for identifying potential bitter peptides from large-scale protein datasets. Although few machine learning-based predictors have been developed for identifying the bitterness of peptides, their prediction performances could be improved. In this study, we developed a new predictor (named iBitter-Fuse) for achieving more accurate identification of bitter peptides. In the proposed iBitter-Fuse, we have integrated a variety of feature encoding schemes for providing sufficient information from different aspects, namely consisting of compositional information and physicochemical properties. To enhance the predictive performance, the customized genetic algorithm utilizing self-assessment-report (GA-SAR) was employed for identifying informative features followed by inputting optimal ones into a support vector machine (SVM)-based classifier for developing the final model (iBitter-Fuse). Benchmarking experiments based on both 10-fold cross-validation and independent tests indicated that the iBitter-Fuse was able to achieve more accurate performance as compared to state-of-the-art methods. To facilitate the high-throughput identification of bitter peptides, the iBitter-Fuse web server was established and made freely available online. It is anticipated that the iBitter-Fuse will be a useful tool for aiding the discovery and de novo design of bitter peptides. 相似文献
3.
为了实现对混凝土抗渗性快速而精确地预测,提出了一种基于随机森林(RF)和支持向量机(SVM)的RF-SVM预测模型。首先以氯离子渗透系数为抗渗性评价指标,基于原材料配比确定了混凝土抗渗性的初始指标体系,然后利用随机森林算法结合后向剔除法进行指标筛选,剔除了冗余指标,得到了用于支持向量机建模的最优指标集,最后在此基础上建立了基于支持向量机的混凝土抗渗性预测模型,并研发了RF-SVM算法。以东北某高速公路项目为背景进行应用分析,结果表明,所提出的RF-SVM模型能够有效筛除冗余因素,得到精度较高的预测结果,且预测结果满足工程实践的要求,能够为混凝土抗渗性预测提供一种快速有效的方法。 相似文献
4.
Adeel Malik Nitin Mahajan Tanveer Ali Dar Chang-Bae Kim 《International journal of molecular sciences》2022,23(17)
Streptococcus pyogenes, or group A Streptococcus (GAS), a gram-positive bacterium, is implicated in a wide range of clinical manifestations and life-threatening diseases. One of the key virulence factors of GAS is streptopain, a C10 family cysteine peptidase. Since its discovery, various homologs of streptopain have been reported from other bacterial species. With the increased affordability of sequencing, a significant increase in the number of potential C10 family-like sequences in the public databases is anticipated, posing a challenge in classifying such sequences. Sequence-similarity-based tools are the methods of choice to identify such streptopain-like sequences. However, these methods depend on some level of sequence similarity between the existing C10 family and the target sequences. Therefore, in this work, we propose a novel predictor, C10Pred, for the prediction of C10 peptidases using sequence-derived optimal features. C10Pred is a support vector machine (SVM) based model which is efficient in predicting C10 enzymes with an overall accuracy of 92.7% and Matthews’ correlation coefficient (MCC) value of 0.855 when tested on an independent dataset. We anticipate that C10Pred will serve as a handy tool to classify novel streptopain-like proteins belonging to the C10 family and offer essential information. 相似文献
5.
针对氧化铝蒸发过程操作模式集中类别不平衡和噪声特征问题,提出基于同步优化的代价敏感支持向量机操作模式识别方法。对氧化铝蒸发过程机理进行分析,该过程的输入条件、操作参数和状态参数被选为原始操作模式,利用离散的粒子群算法优化操作模式的特征集,选择最优特征子集作为最终的操作模式;同时利用连续的粒子群算法优化代价敏感支持向量机的核参数和误分类代价参数,自动搜索和确定最优的核参数和误分类代价参数。工业应用结果表明,与粒子群优化操作模式特征子集或粒子群优化核参数和误分类代价参数相比,所提出的方法优良类操作模式识别高,误分类代价低。 相似文献
6.
为提高支持向量机在建模方面的拟合性能,针对核函数方法中单个核函数的局限性,尝试融合核支持向量机建模方法以提高模型的泛化能力和精度。为避免在进行核融合时,支持向量机稀疏性的缺失,提出将数据映射到稀疏特征空间进行研究。通过仿真研究表明,所建模型在保证稀疏性的前提下,能较好地提高建模精度,从而验证了算法的有效性。 相似文献
7.
基于模拟退火算法和支持向量机的粘液形成菌识别 总被引:2,自引:0,他引:2
针对获取的工业冷却水中的粘液形成菌图像,采用形状不变矩、统计法和分形法分别从形状和纹理两个方面对其进行了特征提取,然后将模拟退火算法应用于图像识别中支持向量机分类参数C和g的优化,并与网格搜索法优化结果进行了对比,结果表明参数优化速度提高了5.736倍,分类器的识别率提高了2.31%.采用模拟退火-支持向量机分类器对粘... 相似文献
8.
9.
10.
免疫文化算法及其在乙烯裂解炉故障诊断中的应用 总被引:1,自引:1,他引:0
引言迄今为止,科研人员已经根据生物进化的机理提出很多用以解决复杂优化问题的方法,如遗传算法、蚁群优化算法、粒子群优化算法等。然而这些传统的进化算法只提供有限的或者隐性关于种群个体经验的知识表示和保存机制,这就让研究人员开始寻找一种利用显性机制来获取并保存种群进化求解知识和经验。在人类学的角度上,文化通常被看成是保存信 相似文献
11.
12.
13.
14.
针对支持向量机(SVM)增量学习过程中易出现计算速度慢、稳定性差的缺陷,提出了一种基于向量投影的代谢支持向量机建模方法.该方法首先运用向量投影算法对训练样本进行预选取来减少样本数量,提高SVM建模速度.然后将新增样本\"代谢\"原则引入SVM增量学习过程中,以解决因新增样本不断加入而导致训练样本数量\"爆炸\"的问题.最后将该方法用于乙烯精馏产品质量软测量建模,实验结果表明,与传统SVM和最小二乘支持向量机(LSSVM)相比,向量投影的代谢SVM具有更好的预测结果. 相似文献
15.
通过分析巴伦诺尔一矿煤质得到了17组煤质分析数据,包括Mad,Ad,Hdaf,Qgr,d。利用多元回归分析的原理,建立煤的发热量关于煤中水分和灰分含量的多元回归方程,并通过R检验、F检验、t检验,证明了回归方程的作用显著,即具有实用价值。但是线性回归分析仅能对煤的发热量进行估算,并不能精确预测。因此,采用了支持向量机(SVM)算法对多元线性回归的初步预测结果进行小范围修正,修正结果显示总体预测精度明显提高,这2种方法的结合,效果优于常用方法。 相似文献
16.
Shie Teck Tiew Yick Eu Chew Ho Yan Lee Jia Wen Chong Raymond R. Tan Kathleen B. Aviso Nishanth G. Chemmangattuvalappil 《化学,工程师,技术》2023,95(3):438-446
In this work, a novel machine learning based methodology was developed to predict fragrance from the molecular structure and the effect of the subjects attributes on odour perception. As fragrance is linked to the molecular structure and interactions, topological indices are used to develop a predictive model. Rough set-based machine learning is used to generate rule-based models that link the topology of fragrant molecules and dilution to their respective odour characteristics. The results show that the generated models are effective in determining the odour characteristic of molecules. 相似文献
17.
基于离散粒子群的气液二相流型特征选择 总被引:1,自引:0,他引:1
针对气液二相流型识别中存在的大量无关或冗余的特征会降低分类器性能的缺陷,提出了离散粒子群算法(BPSO)和最小二乘支持向量机(LS-SVM)封装模式的流型特征选择方法.该方法分别采用小波包和经验模式分解方法(EMD)对原始压差波动信号进行分解,分别提取原始信号和各分解信号的时域量纲一指标组成融合特征.然后采用BPSO进... 相似文献
18.
考虑蜡沉积影响因素的复杂性和最小二乘支持向量机在小样本预测方面的优势,基于最小二乘支持向量机预测的原理,通过优化最小二乘支持向量机的参数,建立了蜡沉积速率的预测模型,并对蜡沉积速率进行了预测。结果表明:该方法在样本数量较小时仍具有较高的精度,蜡沉积速率的预测值和实验值的吻合程度较好;最小二乘支持向量机建模时可以得到直观的函数表达式,而神经网络方法却不能得到模型的显式表达式,因此该方法具有明显的优势;应用径向基核(RBF)作为核函数时,不同初值的正则化参数?和核函数宽度?对预测结果具有较大影响,使用时应合理选择。 相似文献
19.
基于支持向量机(SVM)的软测量建模方法已经在工业过程控制领域得到广泛应用,然而传统支持向量机直接针对原始测量变量建立模型,未能充分挖掘数据的内在特征信息以提高预测精度。针对该问题,本文提出一种基于深度集成支持向量机(DESVM)的软测量建模方法。该方法首先利用深度置信网络(DBN)来对数据进行深层次的信息挖掘,提取出数据的内在特征,然后引入基于Bagging算法的集成学习策略,构建基于深度数据特征的集成支持向量机模型,以提升软测量预测模型的泛化能力。最后通过数值系统和真实工业数据对方法进行应用分析,结果表明本文提出的方法能够有效提升支持向量机软测量模型的预测精度,能够更好地预测过程质量指标的变化。 相似文献
20.
滚动轴承是水泥磨机减速机的核心组件,同时也是故障频发的部件之一,为保证其健康、安全、高效的运行,本文将独立分量分析(ICA)与支持向量机(SVM)方法结合,为磨机减速机滚动轴承的故障诊断提供一个新的思路。首先提取轴承不同故障状态下观测信号的独立分量,再对独立分量(ICA)进行奇异值分解从而得到特征信息,最后联合支持向量机(SVM)将特征信息进行故障识别。数据处理结果表明这种特征提取的方法是有效的。 相似文献